d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C3×C21 | 126 | S3xC3xC21 | 378,54 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C21)⋊1S3 = He3⋊D7 | φ: S3/C1 → S3 ⊆ Aut C3×C21 | 63 | 6+ | (C3xC21):1S3 | 378,38 |
(C3×C21)⋊2S3 = C32⋊D21 | φ: S3/C1 → S3 ⊆ Aut C3×C21 | 63 | 6 | (C3xC21):2S3 | 378,43 |
(C3×C21)⋊3S3 = C7×C32⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C21 | 63 | 6 | (C3xC21):3S3 | 378,34 |
(C3×C21)⋊4S3 = C7×He3⋊C2 | φ: S3/C1 → S3 ⊆ Aut C3×C21 | 63 | 3 | (C3xC21):4S3 | 378,41 |
(C3×C21)⋊5S3 = C33⋊D7 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 189 | (C3xC21):5S3 | 378,59 | |
(C3×C21)⋊6S3 = C3×C3⋊D21 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 126 | (C3xC21):6S3 | 378,57 | |
(C3×C21)⋊7S3 = C32×D21 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 126 | (C3xC21):7S3 | 378,55 | |
(C3×C21)⋊8S3 = C3⋊S3×C21 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 126 | (C3xC21):8S3 | 378,56 | |
(C3×C21)⋊9S3 = C7×C33⋊C2 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 189 | (C3xC21):9S3 | 378,58 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C21).1S3 = D63⋊C3 | φ: S3/C1 → S3 ⊆ Aut C3×C21 | 63 | 6+ | (C3xC21).1S3 | 378,39 |
(C3×C21).2S3 = C7×C9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C21 | 63 | 6 | (C3xC21).2S3 | 378,35 |
(C3×C21).3S3 = C3⋊D63 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 189 | (C3xC21).3S3 | 378,42 | |
(C3×C21).4S3 = C3×D63 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 126 | 2 | (C3xC21).4S3 | 378,36 |
(C3×C21).5S3 = D9×C21 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 126 | 2 | (C3xC21).5S3 | 378,32 |
(C3×C21).6S3 = C7×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C21 | 189 | (C3xC21).6S3 | 378,40 |