metabelian, supersoluble, monomial
Aliases: He3⋊1D7, C32⋊1D21, C32⋊(C3×D7), (C3×C21)⋊1C6, (C3×C21)⋊1S3, C3⋊D21⋊1C3, (C7×He3)⋊1C2, C7⋊3(C32⋊C6), C3.2(C3×D21), C21.12(C3×S3), SmallGroup(378,38)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C21 — He3⋊D7 |
Generators and relations for He3⋊D7
G = < a,b,c,d,e | a3=b3=c3=d7=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=d-1 >
(1 48 27)(2 49 28)(3 43 22)(4 44 23)(5 45 24)(6 46 25)(7 47 26)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 20 13)(2 21 14)(3 15 8)(4 16 9)(5 17 10)(6 18 11)(7 19 12)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 7)(2 6)(3 5)(8 17)(9 16)(10 15)(11 21)(12 20)(13 19)(14 18)(22 45)(23 44)(24 43)(25 49)(26 48)(27 47)(28 46)(29 59)(30 58)(31 57)(32 63)(33 62)(34 61)(35 60)(36 52)(37 51)(38 50)(39 56)(40 55)(41 54)(42 53)
G:=sub<Sym(63)| (1,48,27)(2,49,28)(3,43,22)(4,44,23)(5,45,24)(6,46,25)(7,47,26)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,7)(2,6)(3,5)(8,17)(9,16)(10,15)(11,21)(12,20)(13,19)(14,18)(22,45)(23,44)(24,43)(25,49)(26,48)(27,47)(28,46)(29,59)(30,58)(31,57)(32,63)(33,62)(34,61)(35,60)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53)>;
G:=Group( (1,48,27)(2,49,28)(3,43,22)(4,44,23)(5,45,24)(6,46,25)(7,47,26)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,7)(2,6)(3,5)(8,17)(9,16)(10,15)(11,21)(12,20)(13,19)(14,18)(22,45)(23,44)(24,43)(25,49)(26,48)(27,47)(28,46)(29,59)(30,58)(31,57)(32,63)(33,62)(34,61)(35,60)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53) );
G=PermutationGroup([[(1,48,27),(2,49,28),(3,43,22),(4,44,23),(5,45,24),(6,46,25),(7,47,26),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,20,13),(2,21,14),(3,15,8),(4,16,9),(5,17,10),(6,18,11),(7,19,12),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,7),(2,6),(3,5),(8,17),(9,16),(10,15),(11,21),(12,20),(13,19),(14,18),(22,45),(23,44),(24,43),(25,49),(26,48),(27,47),(28,46),(29,59),(30,58),(31,57),(32,63),(33,62),(34,61),(35,60),(36,52),(37,51),(38,50),(39,56),(40,55),(41,54),(42,53)]])
43 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 7A | 7B | 7C | 21A | ··· | 21F | 21G | ··· | 21AD |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 7 | 7 | 7 | 21 | ··· | 21 | 21 | ··· | 21 |
size | 1 | 63 | 2 | 3 | 3 | 6 | 6 | 6 | 63 | 63 | 2 | 2 | 2 | 2 | ··· | 2 | 6 | ··· | 6 |
43 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | D7 | C3×S3 | C3×D7 | D21 | C3×D21 | C32⋊C6 | He3⋊D7 |
kernel | He3⋊D7 | C7×He3 | C3⋊D21 | C3×C21 | C3×C21 | He3 | C21 | C32 | C32 | C3 | C7 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 6 | 6 | 12 | 1 | 6 |
Matrix representation of He3⋊D7 ►in GL6(𝔽43)
0 | 0 | 8 | 1 | 0 | 0 |
1 | 1 | 41 | 42 | 0 | 0 |
0 | 0 | 42 | 0 | 1 | 0 |
0 | 0 | 8 | 0 | 0 | 1 |
0 | 0 | 42 | 0 | 0 | 0 |
1 | 0 | 8 | 0 | 0 | 0 |
26 | 12 | 0 | 0 | 0 | 0 |
31 | 16 | 0 | 0 | 0 | 0 |
31 | 0 | 38 | 12 | 0 | 0 |
22 | 12 | 9 | 4 | 0 | 0 |
31 | 0 | 0 | 0 | 38 | 12 |
22 | 12 | 0 | 0 | 9 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
38 | 38 | 4 | 31 | 0 | 0 |
28 | 28 | 34 | 38 | 0 | 0 |
26 | 26 | 0 | 0 | 38 | 12 |
19 | 19 | 0 | 0 | 9 | 4 |
8 | 1 | 0 | 0 | 0 | 0 |
42 | 0 | 0 | 0 | 0 | 0 |
42 | 0 | 9 | 1 | 0 | 0 |
9 | 1 | 33 | 42 | 0 | 0 |
42 | 0 | 0 | 0 | 9 | 1 |
9 | 1 | 0 | 0 | 33 | 42 |
37 | 14 | 0 | 0 | 0 | 0 |
19 | 6 | 0 | 0 | 0 | 0 |
37 | 0 | 0 | 0 | 25 | 6 |
19 | 14 | 0 | 0 | 25 | 18 |
37 | 0 | 25 | 6 | 0 | 0 |
19 | 14 | 25 | 18 | 0 | 0 |
G:=sub<GL(6,GF(43))| [0,1,0,0,0,1,0,1,0,0,0,0,8,41,42,8,42,8,1,42,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[26,31,31,22,31,22,12,16,0,12,0,12,0,0,38,9,0,0,0,0,12,4,0,0,0,0,0,0,38,9,0,0,0,0,12,4],[1,0,38,28,26,19,0,1,38,28,26,19,0,0,4,34,0,0,0,0,31,38,0,0,0,0,0,0,38,9,0,0,0,0,12,4],[8,42,42,9,42,9,1,0,0,1,0,1,0,0,9,33,0,0,0,0,1,42,0,0,0,0,0,0,9,33,0,0,0,0,1,42],[37,19,37,19,37,19,14,6,0,14,0,14,0,0,0,0,25,25,0,0,0,0,6,18,0,0,25,25,0,0,0,0,6,18,0,0] >;
He3⋊D7 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes D_7
% in TeX
G:=Group("He3:D7");
// GroupNames label
G:=SmallGroup(378,38);
// by ID
G=gap.SmallGroup(378,38);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-7,182,187,723,8104]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^7=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export