direct product, abelian, monomial, 3-elementary
Aliases: C3×C21, SmallGroup(63,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3×C21 |
C1 — C3×C21 |
C1 — C3×C21 |
Generators and relations for C3×C21
G = < a,b | a3=b21=1, ab=ba >
(1 53 37)(2 54 38)(3 55 39)(4 56 40)(5 57 41)(6 58 42)(7 59 22)(8 60 23)(9 61 24)(10 62 25)(11 63 26)(12 43 27)(13 44 28)(14 45 29)(15 46 30)(16 47 31)(17 48 32)(18 49 33)(19 50 34)(20 51 35)(21 52 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
G:=sub<Sym(63)| (1,53,37)(2,54,38)(3,55,39)(4,56,40)(5,57,41)(6,58,42)(7,59,22)(8,60,23)(9,61,24)(10,62,25)(11,63,26)(12,43,27)(13,44,28)(14,45,29)(15,46,30)(16,47,31)(17,48,32)(18,49,33)(19,50,34)(20,51,35)(21,52,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)>;
G:=Group( (1,53,37)(2,54,38)(3,55,39)(4,56,40)(5,57,41)(6,58,42)(7,59,22)(8,60,23)(9,61,24)(10,62,25)(11,63,26)(12,43,27)(13,44,28)(14,45,29)(15,46,30)(16,47,31)(17,48,32)(18,49,33)(19,50,34)(20,51,35)(21,52,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63) );
G=PermutationGroup([[(1,53,37),(2,54,38),(3,55,39),(4,56,40),(5,57,41),(6,58,42),(7,59,22),(8,60,23),(9,61,24),(10,62,25),(11,63,26),(12,43,27),(13,44,28),(14,45,29),(15,46,30),(16,47,31),(17,48,32),(18,49,33),(19,50,34),(20,51,35),(21,52,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)]])
C3×C21 is a maximal subgroup of
C3⋊D21 C21.C32 C7⋊He3
63 conjugacy classes
class | 1 | 3A | ··· | 3H | 7A | ··· | 7F | 21A | ··· | 21AV |
order | 1 | 3 | ··· | 3 | 7 | ··· | 7 | 21 | ··· | 21 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | |||
image | C1 | C3 | C7 | C21 |
kernel | C3×C21 | C21 | C32 | C3 |
# reps | 1 | 8 | 6 | 48 |
Matrix representation of C3×C21 ►in GL2(𝔽43) generated by
36 | 0 |
0 | 1 |
17 | 0 |
0 | 6 |
G:=sub<GL(2,GF(43))| [36,0,0,1],[17,0,0,6] >;
C3×C21 in GAP, Magma, Sage, TeX
C_3\times C_{21}
% in TeX
G:=Group("C3xC21");
// GroupNames label
G:=SmallGroup(63,4);
// by ID
G=gap.SmallGroup(63,4);
# by ID
G:=PCGroup([3,-3,-3,-7]);
// Polycyclic
G:=Group<a,b|a^3=b^21=1,a*b=b*a>;
// generators/relations
Export