Extensions 1→N→G→Q→1 with N=C5 and Q=C2×C4×D5

Direct product G=N×Q with N=C5 and Q=C2×C4×D5
dρLabelID
D5×C2×C2080D5xC2xC20400,182

Semidirect products G=N:Q with N=C5 and Q=C2×C4×D5
extensionφ:Q→Aut NdρLabelID
C5⋊(C2×C4×D5) = C2×D5×F5φ: C2×C4×D5/D10C4 ⊆ Aut C5408+C5:(C2xC4xD5)400,209
C52(C2×C4×D5) = C4×D52φ: C2×C4×D5/C4×D5C2 ⊆ Aut C5404C5:2(C2xC4xD5)400,169
C53(C2×C4×D5) = C2×Dic52D5φ: C2×C4×D5/C2×Dic5C2 ⊆ Aut C540C5:3(C2xC4xD5)400,175
C54(C2×C4×D5) = C2×C4×C5⋊D5φ: C2×C4×D5/C2×C20C2 ⊆ Aut C5200C5:4(C2xC4xD5)400,192
C55(C2×C4×D5) = C2×D5×Dic5φ: C2×C4×D5/C22×D5C2 ⊆ Aut C580C5:5(C2xC4xD5)400,172

Non-split extensions G=N.Q with N=C5 and Q=C2×C4×D5
extensionφ:Q→Aut NdρLabelID
C5.(C2×C4×D5) = C2×C4×D25φ: C2×C4×D5/C2×C20C2 ⊆ Aut C5200C5.(C2xC4xD5)400,36

׿
×
𝔽