Extensions 1→N→G→Q→1 with N=C50 and Q=D4

Direct product G=N×Q with N=C50 and Q=D4
dρLabelID
D4×C50200D4xC50400,46

Semidirect products G=N:Q with N=C50 and Q=D4
extensionφ:Q→Aut NdρLabelID
C501D4 = C2×D100φ: D4/C4C2 ⊆ Aut C50200C50:1D4400,37
C502D4 = C2×C25⋊D4φ: D4/C22C2 ⊆ Aut C50200C50:2D4400,44

Non-split extensions G=N.Q with N=C50 and Q=D4
extensionφ:Q→Aut NdρLabelID
C50.1D4 = Dic100φ: D4/C4C2 ⊆ Aut C504002-C50.1D4400,4
C50.2D4 = C200⋊C2φ: D4/C4C2 ⊆ Aut C502002C50.2D4400,7
C50.3D4 = D200φ: D4/C4C2 ⊆ Aut C502002+C50.3D4400,8
C50.4D4 = C4⋊Dic25φ: D4/C4C2 ⊆ Aut C50400C50.4D4400,13
C50.5D4 = C50.D4φ: D4/C22C2 ⊆ Aut C50400C50.5D4400,12
C50.6D4 = D50⋊C4φ: D4/C22C2 ⊆ Aut C50200C50.6D4400,14
C50.7D4 = D4.D25φ: D4/C22C2 ⊆ Aut C502004-C50.7D4400,15
C50.8D4 = D4⋊D25φ: D4/C22C2 ⊆ Aut C502004+C50.8D4400,16
C50.9D4 = C25⋊Q16φ: D4/C22C2 ⊆ Aut C504004-C50.9D4400,17
C50.10D4 = Q8⋊D25φ: D4/C22C2 ⊆ Aut C502004+C50.10D4400,18
C50.11D4 = C23.D25φ: D4/C22C2 ⊆ Aut C50200C50.11D4400,19
C50.12D4 = C22⋊C4×C25central extension (φ=1)200C50.12D4400,21
C50.13D4 = C4⋊C4×C25central extension (φ=1)400C50.13D4400,22
C50.14D4 = D8×C25central extension (φ=1)2002C50.14D4400,25
C50.15D4 = SD16×C25central extension (φ=1)2002C50.15D4400,26
C50.16D4 = Q16×C25central extension (φ=1)4002C50.16D4400,27

׿
×
𝔽