Copied to
clipboard

G = SD16×C25order 400 = 24·52

Direct product of C25 and SD16

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: SD16×C25, Q8⋊C50, C82C50, D4.C50, C2006C2, C40.6C10, C50.15D4, C100.18C22, C5.(C5×SD16), C4.2(C2×C50), (Q8×C25)⋊4C2, C2.4(D4×C25), (C5×SD16).C5, (D4×C25).2C2, (C5×D4).3C10, C10.15(C5×D4), (C5×Q8).2C10, C20.18(C2×C10), SmallGroup(400,26)

Series: Derived Chief Lower central Upper central

C1C4 — SD16×C25
C1C2C10C20C100Q8×C25 — SD16×C25
C1C2C4 — SD16×C25
C1C50C100 — SD16×C25

Generators and relations for SD16×C25
 G = < a,b,c | a25=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

4C2
2C22
2C4
4C10
2C20
2C2×C10
4C50
2C100
2C2×C50

Smallest permutation representation of SD16×C25
On 200 points
Generators in S200
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125)(126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175)(176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
(1 71 102 88 171 129 180 33)(2 72 103 89 172 130 181 34)(3 73 104 90 173 131 182 35)(4 74 105 91 174 132 183 36)(5 75 106 92 175 133 184 37)(6 51 107 93 151 134 185 38)(7 52 108 94 152 135 186 39)(8 53 109 95 153 136 187 40)(9 54 110 96 154 137 188 41)(10 55 111 97 155 138 189 42)(11 56 112 98 156 139 190 43)(12 57 113 99 157 140 191 44)(13 58 114 100 158 141 192 45)(14 59 115 76 159 142 193 46)(15 60 116 77 160 143 194 47)(16 61 117 78 161 144 195 48)(17 62 118 79 162 145 196 49)(18 63 119 80 163 146 197 50)(19 64 120 81 164 147 198 26)(20 65 121 82 165 148 199 27)(21 66 122 83 166 149 200 28)(22 67 123 84 167 150 176 29)(23 68 124 85 168 126 177 30)(24 69 125 86 169 127 178 31)(25 70 101 87 170 128 179 32)
(26 147)(27 148)(28 149)(29 150)(30 126)(31 127)(32 128)(33 129)(34 130)(35 131)(36 132)(37 133)(38 134)(39 135)(40 136)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 93)(52 94)(53 95)(54 96)(55 97)(56 98)(57 99)(58 100)(59 76)(60 77)(61 78)(62 79)(63 80)(64 81)(65 82)(66 83)(67 84)(68 85)(69 86)(70 87)(71 88)(72 89)(73 90)(74 91)(75 92)(101 179)(102 180)(103 181)(104 182)(105 183)(106 184)(107 185)(108 186)(109 187)(110 188)(111 189)(112 190)(113 191)(114 192)(115 193)(116 194)(117 195)(118 196)(119 197)(120 198)(121 199)(122 200)(123 176)(124 177)(125 178)

G:=sub<Sym(200)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,71,102,88,171,129,180,33)(2,72,103,89,172,130,181,34)(3,73,104,90,173,131,182,35)(4,74,105,91,174,132,183,36)(5,75,106,92,175,133,184,37)(6,51,107,93,151,134,185,38)(7,52,108,94,152,135,186,39)(8,53,109,95,153,136,187,40)(9,54,110,96,154,137,188,41)(10,55,111,97,155,138,189,42)(11,56,112,98,156,139,190,43)(12,57,113,99,157,140,191,44)(13,58,114,100,158,141,192,45)(14,59,115,76,159,142,193,46)(15,60,116,77,160,143,194,47)(16,61,117,78,161,144,195,48)(17,62,118,79,162,145,196,49)(18,63,119,80,163,146,197,50)(19,64,120,81,164,147,198,26)(20,65,121,82,165,148,199,27)(21,66,122,83,166,149,200,28)(22,67,123,84,167,150,176,29)(23,68,124,85,168,126,177,30)(24,69,125,86,169,127,178,31)(25,70,101,87,170,128,179,32), (26,147)(27,148)(28,149)(29,150)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(57,99)(58,100)(59,76)(60,77)(61,78)(62,79)(63,80)(64,81)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(101,179)(102,180)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190)(113,191)(114,192)(115,193)(116,194)(117,195)(118,196)(119,197)(120,198)(121,199)(122,200)(123,176)(124,177)(125,178)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,71,102,88,171,129,180,33)(2,72,103,89,172,130,181,34)(3,73,104,90,173,131,182,35)(4,74,105,91,174,132,183,36)(5,75,106,92,175,133,184,37)(6,51,107,93,151,134,185,38)(7,52,108,94,152,135,186,39)(8,53,109,95,153,136,187,40)(9,54,110,96,154,137,188,41)(10,55,111,97,155,138,189,42)(11,56,112,98,156,139,190,43)(12,57,113,99,157,140,191,44)(13,58,114,100,158,141,192,45)(14,59,115,76,159,142,193,46)(15,60,116,77,160,143,194,47)(16,61,117,78,161,144,195,48)(17,62,118,79,162,145,196,49)(18,63,119,80,163,146,197,50)(19,64,120,81,164,147,198,26)(20,65,121,82,165,148,199,27)(21,66,122,83,166,149,200,28)(22,67,123,84,167,150,176,29)(23,68,124,85,168,126,177,30)(24,69,125,86,169,127,178,31)(25,70,101,87,170,128,179,32), (26,147)(27,148)(28,149)(29,150)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(57,99)(58,100)(59,76)(60,77)(61,78)(62,79)(63,80)(64,81)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(101,179)(102,180)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190)(113,191)(114,192)(115,193)(116,194)(117,195)(118,196)(119,197)(120,198)(121,199)(122,200)(123,176)(124,177)(125,178) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125),(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175),(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)], [(1,71,102,88,171,129,180,33),(2,72,103,89,172,130,181,34),(3,73,104,90,173,131,182,35),(4,74,105,91,174,132,183,36),(5,75,106,92,175,133,184,37),(6,51,107,93,151,134,185,38),(7,52,108,94,152,135,186,39),(8,53,109,95,153,136,187,40),(9,54,110,96,154,137,188,41),(10,55,111,97,155,138,189,42),(11,56,112,98,156,139,190,43),(12,57,113,99,157,140,191,44),(13,58,114,100,158,141,192,45),(14,59,115,76,159,142,193,46),(15,60,116,77,160,143,194,47),(16,61,117,78,161,144,195,48),(17,62,118,79,162,145,196,49),(18,63,119,80,163,146,197,50),(19,64,120,81,164,147,198,26),(20,65,121,82,165,148,199,27),(21,66,122,83,166,149,200,28),(22,67,123,84,167,150,176,29),(23,68,124,85,168,126,177,30),(24,69,125,86,169,127,178,31),(25,70,101,87,170,128,179,32)], [(26,147),(27,148),(28,149),(29,150),(30,126),(31,127),(32,128),(33,129),(34,130),(35,131),(36,132),(37,133),(38,134),(39,135),(40,136),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,93),(52,94),(53,95),(54,96),(55,97),(56,98),(57,99),(58,100),(59,76),(60,77),(61,78),(62,79),(63,80),(64,81),(65,82),(66,83),(67,84),(68,85),(69,86),(70,87),(71,88),(72,89),(73,90),(74,91),(75,92),(101,179),(102,180),(103,181),(104,182),(105,183),(106,184),(107,185),(108,186),(109,187),(110,188),(111,189),(112,190),(113,191),(114,192),(115,193),(116,194),(117,195),(118,196),(119,197),(120,198),(121,199),(122,200),(123,176),(124,177),(125,178)]])

175 conjugacy classes

class 1 2A2B4A4B5A5B5C5D8A8B10A10B10C10D10E10F10G10H20A20B20C20D20E20F20G20H25A···25T40A···40H50A···50T50U···50AN100A···100T100U···100AN200A···200AN
order122445555881010101010101010202020202020202025···2540···4050···5050···50100···100100···100200···200
size1142411112211114444222244441···12···21···14···42···24···42···2

175 irreducible representations

dim111111111111222222
type+++++
imageC1C2C2C2C5C10C10C10C25C50C50C50D4SD16C5×D4C5×SD16D4×C25SD16×C25
kernelSD16×C25C200D4×C25Q8×C25C5×SD16C40C5×D4C5×Q8SD16C8D4Q8C50C25C10C5C2C1
# reps111144442020202012482040

Matrix representation of SD16×C25 in GL2(𝔽401) generated by

250
025
,
143143
1290
,
10
400400
G:=sub<GL(2,GF(401))| [25,0,0,25],[143,129,143,0],[1,400,0,400] >;

SD16×C25 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times C_{25}
% in TeX

G:=Group("SD16xC25");
// GroupNames label

G:=SmallGroup(400,26);
// by ID

G=gap.SmallGroup(400,26);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-5,-2,1200,265,194,5283,2649,261]);
// Polycyclic

G:=Group<a,b,c|a^25=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

Export

Subgroup lattice of SD16×C25 in TeX

׿
×
𝔽