direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C25⋊D4, C50⋊2D4, C23⋊D25, C22⋊2D50, D50⋊3C22, C50.10C23, Dic25⋊2C22, C25⋊3(C2×D4), (C2×C50)⋊3C22, (C22×C50)⋊2C2, (C2×Dic25)⋊4C2, (C2×C10).28D10, (C22×D25)⋊3C2, (C22×C10).4D5, C10.19(C5⋊D4), C10.28(C22×D5), C2.10(C22×D25), C5.(C2×C5⋊D4), SmallGroup(400,44)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C25⋊D4
G = < a,b,c,d | a2=b25=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 637 in 81 conjugacy classes, 35 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, D4, C23, C23, D5, C10, C10, C10, C2×D4, Dic5, D10, C2×C10, C2×C10, C2×C10, C25, C2×Dic5, C5⋊D4, C22×D5, C22×C10, D25, C50, C50, C50, C2×C5⋊D4, Dic25, D50, D50, C2×C50, C2×C50, C2×C50, C2×Dic25, C25⋊D4, C22×D25, C22×C50, C2×C25⋊D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C5⋊D4, C22×D5, D25, C2×C5⋊D4, D50, C25⋊D4, C22×D25, C2×C25⋊D4
(1 121)(2 122)(3 123)(4 124)(5 125)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 112)(18 113)(19 114)(20 115)(21 116)(22 117)(23 118)(24 119)(25 120)(26 147)(27 148)(28 149)(29 150)(30 126)(31 127)(32 128)(33 129)(34 130)(35 131)(36 132)(37 133)(38 134)(39 135)(40 136)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 163)(52 164)(53 165)(54 166)(55 167)(56 168)(57 169)(58 170)(59 171)(60 172)(61 173)(62 174)(63 175)(64 151)(65 152)(66 153)(67 154)(68 155)(69 156)(70 157)(71 158)(72 159)(73 160)(74 161)(75 162)(76 193)(77 194)(78 195)(79 196)(80 197)(81 198)(82 199)(83 200)(84 176)(85 177)(86 178)(87 179)(88 180)(89 181)(90 182)(91 183)(92 184)(93 185)(94 186)(95 187)(96 188)(97 189)(98 190)(99 191)(100 192)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125)(126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175)(176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)
(1 56 35 96)(2 55 36 95)(3 54 37 94)(4 53 38 93)(5 52 39 92)(6 51 40 91)(7 75 41 90)(8 74 42 89)(9 73 43 88)(10 72 44 87)(11 71 45 86)(12 70 46 85)(13 69 47 84)(14 68 48 83)(15 67 49 82)(16 66 50 81)(17 65 26 80)(18 64 27 79)(19 63 28 78)(20 62 29 77)(21 61 30 76)(22 60 31 100)(23 59 32 99)(24 58 33 98)(25 57 34 97)(101 163 136 183)(102 162 137 182)(103 161 138 181)(104 160 139 180)(105 159 140 179)(106 158 141 178)(107 157 142 177)(108 156 143 176)(109 155 144 200)(110 154 145 199)(111 153 146 198)(112 152 147 197)(113 151 148 196)(114 175 149 195)(115 174 150 194)(116 173 126 193)(117 172 127 192)(118 171 128 191)(119 170 129 190)(120 169 130 189)(121 168 131 188)(122 167 132 187)(123 166 133 186)(124 165 134 185)(125 164 135 184)
(2 25)(3 24)(4 23)(5 22)(6 21)(7 20)(8 19)(9 18)(10 17)(11 16)(12 15)(13 14)(26 44)(27 43)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 36)(45 50)(46 49)(47 48)(51 76)(52 100)(53 99)(54 98)(55 97)(56 96)(57 95)(58 94)(59 93)(60 92)(61 91)(62 90)(63 89)(64 88)(65 87)(66 86)(67 85)(68 84)(69 83)(70 82)(71 81)(72 80)(73 79)(74 78)(75 77)(101 116)(102 115)(103 114)(104 113)(105 112)(106 111)(107 110)(108 109)(117 125)(118 124)(119 123)(120 122)(126 136)(127 135)(128 134)(129 133)(130 132)(137 150)(138 149)(139 148)(140 147)(141 146)(142 145)(143 144)(151 180)(152 179)(153 178)(154 177)(155 176)(156 200)(157 199)(158 198)(159 197)(160 196)(161 195)(162 194)(163 193)(164 192)(165 191)(166 190)(167 189)(168 188)(169 187)(170 186)(171 185)(172 184)(173 183)(174 182)(175 181)
G:=sub<Sym(200)| (1,121)(2,122)(3,123)(4,124)(5,125)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,147)(27,148)(28,149)(29,150)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,161)(75,162)(76,193)(77,194)(78,195)(79,196)(80,197)(81,198)(82,199)(83,200)(84,176)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,56,35,96)(2,55,36,95)(3,54,37,94)(4,53,38,93)(5,52,39,92)(6,51,40,91)(7,75,41,90)(8,74,42,89)(9,73,43,88)(10,72,44,87)(11,71,45,86)(12,70,46,85)(13,69,47,84)(14,68,48,83)(15,67,49,82)(16,66,50,81)(17,65,26,80)(18,64,27,79)(19,63,28,78)(20,62,29,77)(21,61,30,76)(22,60,31,100)(23,59,32,99)(24,58,33,98)(25,57,34,97)(101,163,136,183)(102,162,137,182)(103,161,138,181)(104,160,139,180)(105,159,140,179)(106,158,141,178)(107,157,142,177)(108,156,143,176)(109,155,144,200)(110,154,145,199)(111,153,146,198)(112,152,147,197)(113,151,148,196)(114,175,149,195)(115,174,150,194)(116,173,126,193)(117,172,127,192)(118,171,128,191)(119,170,129,190)(120,169,130,189)(121,168,131,188)(122,167,132,187)(123,166,133,186)(124,165,134,185)(125,164,135,184), (2,25)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17)(11,16)(12,15)(13,14)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(45,50)(46,49)(47,48)(51,76)(52,100)(53,99)(54,98)(55,97)(56,96)(57,95)(58,94)(59,93)(60,92)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)(117,125)(118,124)(119,123)(120,122)(126,136)(127,135)(128,134)(129,133)(130,132)(137,150)(138,149)(139,148)(140,147)(141,146)(142,145)(143,144)(151,180)(152,179)(153,178)(154,177)(155,176)(156,200)(157,199)(158,198)(159,197)(160,196)(161,195)(162,194)(163,193)(164,192)(165,191)(166,190)(167,189)(168,188)(169,187)(170,186)(171,185)(172,184)(173,183)(174,182)(175,181)>;
G:=Group( (1,121)(2,122)(3,123)(4,124)(5,125)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,147)(27,148)(28,149)(29,150)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,161)(75,162)(76,193)(77,194)(78,195)(79,196)(80,197)(81,198)(82,199)(83,200)(84,176)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175)(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200), (1,56,35,96)(2,55,36,95)(3,54,37,94)(4,53,38,93)(5,52,39,92)(6,51,40,91)(7,75,41,90)(8,74,42,89)(9,73,43,88)(10,72,44,87)(11,71,45,86)(12,70,46,85)(13,69,47,84)(14,68,48,83)(15,67,49,82)(16,66,50,81)(17,65,26,80)(18,64,27,79)(19,63,28,78)(20,62,29,77)(21,61,30,76)(22,60,31,100)(23,59,32,99)(24,58,33,98)(25,57,34,97)(101,163,136,183)(102,162,137,182)(103,161,138,181)(104,160,139,180)(105,159,140,179)(106,158,141,178)(107,157,142,177)(108,156,143,176)(109,155,144,200)(110,154,145,199)(111,153,146,198)(112,152,147,197)(113,151,148,196)(114,175,149,195)(115,174,150,194)(116,173,126,193)(117,172,127,192)(118,171,128,191)(119,170,129,190)(120,169,130,189)(121,168,131,188)(122,167,132,187)(123,166,133,186)(124,165,134,185)(125,164,135,184), (2,25)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17)(11,16)(12,15)(13,14)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(45,50)(46,49)(47,48)(51,76)(52,100)(53,99)(54,98)(55,97)(56,96)(57,95)(58,94)(59,93)(60,92)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)(117,125)(118,124)(119,123)(120,122)(126,136)(127,135)(128,134)(129,133)(130,132)(137,150)(138,149)(139,148)(140,147)(141,146)(142,145)(143,144)(151,180)(152,179)(153,178)(154,177)(155,176)(156,200)(157,199)(158,198)(159,197)(160,196)(161,195)(162,194)(163,193)(164,192)(165,191)(166,190)(167,189)(168,188)(169,187)(170,186)(171,185)(172,184)(173,183)(174,182)(175,181) );
G=PermutationGroup([[(1,121),(2,122),(3,123),(4,124),(5,125),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,112),(18,113),(19,114),(20,115),(21,116),(22,117),(23,118),(24,119),(25,120),(26,147),(27,148),(28,149),(29,150),(30,126),(31,127),(32,128),(33,129),(34,130),(35,131),(36,132),(37,133),(38,134),(39,135),(40,136),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,163),(52,164),(53,165),(54,166),(55,167),(56,168),(57,169),(58,170),(59,171),(60,172),(61,173),(62,174),(63,175),(64,151),(65,152),(66,153),(67,154),(68,155),(69,156),(70,157),(71,158),(72,159),(73,160),(74,161),(75,162),(76,193),(77,194),(78,195),(79,196),(80,197),(81,198),(82,199),(83,200),(84,176),(85,177),(86,178),(87,179),(88,180),(89,181),(90,182),(91,183),(92,184),(93,185),(94,186),(95,187),(96,188),(97,189),(98,190),(99,191),(100,192)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125),(126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175),(176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)], [(1,56,35,96),(2,55,36,95),(3,54,37,94),(4,53,38,93),(5,52,39,92),(6,51,40,91),(7,75,41,90),(8,74,42,89),(9,73,43,88),(10,72,44,87),(11,71,45,86),(12,70,46,85),(13,69,47,84),(14,68,48,83),(15,67,49,82),(16,66,50,81),(17,65,26,80),(18,64,27,79),(19,63,28,78),(20,62,29,77),(21,61,30,76),(22,60,31,100),(23,59,32,99),(24,58,33,98),(25,57,34,97),(101,163,136,183),(102,162,137,182),(103,161,138,181),(104,160,139,180),(105,159,140,179),(106,158,141,178),(107,157,142,177),(108,156,143,176),(109,155,144,200),(110,154,145,199),(111,153,146,198),(112,152,147,197),(113,151,148,196),(114,175,149,195),(115,174,150,194),(116,173,126,193),(117,172,127,192),(118,171,128,191),(119,170,129,190),(120,169,130,189),(121,168,131,188),(122,167,132,187),(123,166,133,186),(124,165,134,185),(125,164,135,184)], [(2,25),(3,24),(4,23),(5,22),(6,21),(7,20),(8,19),(9,18),(10,17),(11,16),(12,15),(13,14),(26,44),(27,43),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,36),(45,50),(46,49),(47,48),(51,76),(52,100),(53,99),(54,98),(55,97),(56,96),(57,95),(58,94),(59,93),(60,92),(61,91),(62,90),(63,89),(64,88),(65,87),(66,86),(67,85),(68,84),(69,83),(70,82),(71,81),(72,80),(73,79),(74,78),(75,77),(101,116),(102,115),(103,114),(104,113),(105,112),(106,111),(107,110),(108,109),(117,125),(118,124),(119,123),(120,122),(126,136),(127,135),(128,134),(129,133),(130,132),(137,150),(138,149),(139,148),(140,147),(141,146),(142,145),(143,144),(151,180),(152,179),(153,178),(154,177),(155,176),(156,200),(157,199),(158,198),(159,197),(160,196),(161,195),(162,194),(163,193),(164,192),(165,191),(166,190),(167,189),(168,188),(169,187),(170,186),(171,185),(172,184),(173,183),(174,182),(175,181)]])
106 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 10A | ··· | 10N | 25A | ··· | 25J | 50A | ··· | 50BR |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 25 | ··· | 25 | 50 | ··· | 50 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 50 | 50 | 50 | 50 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
106 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | + | ||
| image | C1 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | C5⋊D4 | D25 | D50 | C25⋊D4 |
| kernel | C2×C25⋊D4 | C2×Dic25 | C25⋊D4 | C22×D25 | C22×C50 | C50 | C22×C10 | C2×C10 | C10 | C23 | C22 | C2 |
| # reps | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 6 | 8 | 10 | 30 | 40 |
Matrix representation of C2×C25⋊D4 ►in GL3(𝔽101) generated by
| 100 | 0 | 0 |
| 0 | 100 | 0 |
| 0 | 0 | 100 |
| 1 | 0 | 0 |
| 0 | 39 | 64 |
| 0 | 37 | 97 |
| 1 | 0 | 0 |
| 0 | 2 | 2 |
| 0 | 48 | 99 |
| 100 | 0 | 0 |
| 0 | 78 | 23 |
| 0 | 100 | 23 |
G:=sub<GL(3,GF(101))| [100,0,0,0,100,0,0,0,100],[1,0,0,0,39,37,0,64,97],[1,0,0,0,2,48,0,2,99],[100,0,0,0,78,100,0,23,23] >;
C2×C25⋊D4 in GAP, Magma, Sage, TeX
C_2\times C_{25}\rtimes D_4 % in TeX
G:=Group("C2xC25:D4"); // GroupNames label
G:=SmallGroup(400,44);
// by ID
G=gap.SmallGroup(400,44);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,218,4324,628,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^25=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations