Extensions 1→N→G→Q→1 with N=C22 and Q=D50

Direct product G=N×Q with N=C22 and Q=D50

Semidirect products G=N:Q with N=C22 and Q=D50
extensionφ:Q→Aut NdρLabelID
C221D50 = D4×D25φ: D50/D25C2 ⊆ Aut C221004+C2^2:1D50400,39
C222D50 = C2×C25⋊D4φ: D50/C50C2 ⊆ Aut C22200C2^2:2D50400,44

Non-split extensions G=N.Q with N=C22 and Q=D50
extensionφ:Q→Aut NdρLabelID
C22.1D50 = D42D25φ: D50/D25C2 ⊆ Aut C222004-C2^2.1D50400,40
C22.2D50 = D1005C2φ: D50/C50C2 ⊆ Aut C222002C2^2.2D50400,38
C22.3D50 = C4×Dic25central extension (φ=1)400C2^2.3D50400,11
C22.4D50 = C50.D4central extension (φ=1)400C2^2.4D50400,12
C22.5D50 = C4⋊Dic25central extension (φ=1)400C2^2.5D50400,13
C22.6D50 = D50⋊C4central extension (φ=1)200C2^2.6D50400,14
C22.7D50 = C23.D25central extension (φ=1)200C2^2.7D50400,19
C22.8D50 = C2×Dic50central extension (φ=1)400C2^2.8D50400,35
C22.9D50 = C2×C4×D25central extension (φ=1)200C2^2.9D50400,36
C22.10D50 = C2×D100central extension (φ=1)200C2^2.10D50400,37
C22.11D50 = C22×Dic25central extension (φ=1)400C2^2.11D50400,43