direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D50, C2×D25, C50⋊C2, C25⋊C22, C5.D10, C10.2D5, sometimes denoted D100 or Dih50 or Dih100, SmallGroup(100,4)
Series: Derived ►Chief ►Lower central ►Upper central
C25 — D50 |
Generators and relations for D50
G = < a,b | a50=b2=1, bab=a-1 >
Character table of D50
class | 1 | 2A | 2B | 2C | 5A | 5B | 10A | 10B | 25A | 25B | 25C | 25D | 25E | 25F | 25G | 25H | 25I | 25J | 50A | 50B | 50C | 50D | 50E | 50F | 50G | 50H | 50I | 50J | |
size | 1 | 1 | 25 | 25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2516+ζ259 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2517+ζ258 | ζ2521+ζ254 | -ζ2514-ζ2511 | -ζ2519-ζ256 | -ζ2524-ζ25 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2521-ζ254 | -ζ2516-ζ259 | orthogonal faithful |
ρ10 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2517+ζ258 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2521+ζ254 | ζ2523+ζ252 | -ζ2518-ζ257 | -ζ2522-ζ253 | -ζ2513-ζ2512 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2523-ζ252 | -ζ2517-ζ258 | orthogonal faithful |
ρ11 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2516+ζ259 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2517+ζ258 | ζ2521+ζ254 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2521+ζ254 | ζ2516+ζ259 | orthogonal lifted from D25 |
ρ12 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2523+ζ252 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2524+ζ25 | ζ2513+ζ2512 | -ζ2517-ζ258 | -ζ2518-ζ257 | -ζ2522-ζ253 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2513-ζ2512 | -ζ2523-ζ252 | orthogonal faithful |
ρ13 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2521+ζ254 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2523+ζ252 | ζ2524+ζ25 | -ζ2516-ζ259 | -ζ2514-ζ2511 | -ζ2519-ζ256 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2524-ζ25 | -ζ2521-ζ254 | orthogonal faithful |
ρ14 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2522+ζ253 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2514+ζ2511 | ζ2518+ζ257 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2518+ζ257 | ζ2522+ζ253 | orthogonal lifted from D25 |
ρ15 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2514+ζ2511 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2518+ζ257 | ζ2516+ζ259 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2516+ζ259 | ζ2514+ζ2511 | orthogonal lifted from D25 |
ρ16 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2521+ζ254 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2523+ζ252 | ζ2524+ζ25 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2524+ζ25 | ζ2521+ζ254 | orthogonal lifted from D25 |
ρ17 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2524+ζ25 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2513+ζ2512 | ζ2519+ζ256 | -ζ2521-ζ254 | -ζ2516-ζ259 | -ζ2514-ζ2511 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2519-ζ256 | -ζ2524-ζ25 | orthogonal faithful |
ρ18 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2518+ζ257 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2516+ζ259 | ζ2517+ζ258 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2517+ζ258 | ζ2518+ζ257 | orthogonal lifted from D25 |
ρ19 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2514+ζ2511 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2518+ζ257 | ζ2516+ζ259 | -ζ2519-ζ256 | -ζ2524-ζ25 | -ζ2521-ζ254 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2516-ζ259 | -ζ2514-ζ2511 | orthogonal faithful |
ρ20 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2518+ζ257 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2516+ζ259 | ζ2517+ζ258 | -ζ2522-ζ253 | -ζ2513-ζ2512 | -ζ2523-ζ252 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2517-ζ258 | -ζ2518-ζ257 | orthogonal faithful |
ρ21 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2517+ζ258 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2521+ζ254 | ζ2523+ζ252 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2523+ζ252 | ζ2517+ζ258 | orthogonal lifted from D25 |
ρ22 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2522+ζ253 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2514+ζ2511 | ζ2518+ζ257 | -ζ2513-ζ2512 | -ζ2523-ζ252 | -ζ2517-ζ258 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2518-ζ257 | -ζ2522-ζ253 | orthogonal faithful |
ρ23 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2519+ζ256 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2522+ζ253 | ζ2514+ζ2511 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2514+ζ2511 | ζ2519+ζ256 | orthogonal lifted from D25 |
ρ24 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2523+ζ252 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2524+ζ25 | ζ2513+ζ2512 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2513+ζ2512 | ζ2523+ζ252 | orthogonal lifted from D25 |
ρ25 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2513+ζ2512 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2519+ζ256 | ζ2522+ζ253 | -ζ2523-ζ252 | -ζ2517-ζ258 | -ζ2518-ζ257 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2522-ζ253 | -ζ2513-ζ2512 | orthogonal faithful |
ρ26 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2524+ζ25 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2513+ζ2512 | ζ2519+ζ256 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2519+ζ256 | ζ2524+ζ25 | orthogonal lifted from D25 |
ρ27 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2513+ζ2512 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2519+ζ256 | ζ2522+ζ253 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2522+ζ253 | ζ2513+ζ2512 | orthogonal lifted from D25 |
ρ28 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2519+ζ256 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2522+ζ253 | ζ2514+ζ2511 | -ζ2524-ζ25 | -ζ2521-ζ254 | -ζ2516-ζ259 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2514-ζ2511 | -ζ2519-ζ256 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(1 50)(2 49)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 42)(10 41)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(21 30)(22 29)(23 28)(24 27)(25 26)
G:=sub<Sym(50)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,50)(2,49)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(22,29)(23,28)(24,27)(25,26)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,50)(2,49)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(22,29)(23,28)(24,27)(25,26) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(1,50),(2,49),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,42),(10,41),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(21,30),(22,29),(23,28),(24,27),(25,26)]])
D50 is a maximal subgroup of
D100 C25⋊D4
D50 is a maximal quotient of Dic50 D100 C25⋊D4
Matrix representation of D50 ►in GL2(𝔽101) generated by
64 | 51 |
89 | 52 |
4 | 6 |
48 | 97 |
G:=sub<GL(2,GF(101))| [64,89,51,52],[4,48,6,97] >;
D50 in GAP, Magma, Sage, TeX
D_{50}
% in TeX
G:=Group("D50");
// GroupNames label
G:=SmallGroup(100,4);
// by ID
G=gap.SmallGroup(100,4);
# by ID
G:=PCGroup([4,-2,-2,-5,-5,434,250,1283]);
// Polycyclic
G:=Group<a,b|a^50=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D50 in TeX
Character table of D50 in TeX