Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C20

Direct product G=NxQ with N=C2xC10 and Q=C20
dρLabelID
C2xC10xC20400C2xC10xC20400,201

Semidirect products G=N:Q with N=C2xC10 and Q=C20
extensionφ:Q→Aut NdρLabelID
(C2xC10):1C20 = C5xC22:F5φ: C20/C5C4 ⊆ Aut C2xC10404(C2xC10):1C20400,141
(C2xC10):2C20 = F5xC2xC10φ: C20/C5C4 ⊆ Aut C2xC1080(C2xC10):2C20400,214
(C2xC10):3C20 = C22:C4xC52φ: C20/C10C2 ⊆ Aut C2xC10200(C2xC10):3C20400,109
(C2xC10):4C20 = C5xC23.D5φ: C20/C10C2 ⊆ Aut C2xC1040(C2xC10):4C20400,91
(C2xC10):5C20 = Dic5xC2xC10φ: C20/C10C2 ⊆ Aut C2xC1080(C2xC10):5C20400,189

Non-split extensions G=N.Q with N=C2xC10 and Q=C20
extensionφ:Q→Aut NdρLabelID
(C2xC10).1C20 = C10xC5:C8φ: C20/C5C4 ⊆ Aut C2xC1080(C2xC10).1C20400,139
(C2xC10).2C20 = C5xC22.F5φ: C20/C5C4 ⊆ Aut C2xC10404(C2xC10).2C20400,140
(C2xC10).3C20 = C22:C4xC25φ: C20/C10C2 ⊆ Aut C2xC10200(C2xC10).3C20400,21
(C2xC10).4C20 = M4(2)xC25φ: C20/C10C2 ⊆ Aut C2xC102002(C2xC10).4C20400,24
(C2xC10).5C20 = M4(2)xC52φ: C20/C10C2 ⊆ Aut C2xC10200(C2xC10).5C20400,112
(C2xC10).6C20 = C10xC5:2C8φ: C20/C10C2 ⊆ Aut C2xC1080(C2xC10).6C20400,81
(C2xC10).7C20 = C5xC4.Dic5φ: C20/C10C2 ⊆ Aut C2xC10402(C2xC10).7C20400,82

׿
x
:
Z
F
o
wr
Q
<