Copied to
clipboard

G = Dic5×C2×C10order 400 = 24·52

Direct product of C2×C10 and Dic5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic5×C2×C10, C10212C4, C102.30C22, (C2×C10)⋊5C20, C103(C2×C20), C53(C22×C20), C23.2(C5×D5), (C2×C10).48D10, (C2×C102).4C2, C5212(C22×C4), (C22×C10).8D5, (C5×C10).27C23, C10.9(C22×C10), (C22×C10).5C10, C10.48(C22×D5), C22.11(D5×C10), C2.2(D5×C2×C10), (C5×C10)⋊11(C2×C4), (C2×C10).14(C2×C10), SmallGroup(400,189)

Series: Derived Chief Lower central Upper central

C1C5 — Dic5×C2×C10
C1C5C10C5×C10C5×Dic5C10×Dic5 — Dic5×C2×C10
C5 — Dic5×C2×C10
C1C22×C10

Generators and relations for Dic5×C2×C10
 G = < a,b,c,d | a2=b10=c10=1, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 260 in 140 conjugacy classes, 86 normal (14 characteristic)
C1, C2, C2, C4, C22, C5, C5, C2×C4, C23, C10, C10, C10, C22×C4, Dic5, C20, C2×C10, C2×C10, C52, C2×Dic5, C2×C20, C22×C10, C22×C10, C5×C10, C5×C10, C22×Dic5, C22×C20, C5×Dic5, C102, C10×Dic5, C2×C102, Dic5×C2×C10
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, D5, C10, C22×C4, Dic5, C20, D10, C2×C10, C2×Dic5, C2×C20, C22×D5, C22×C10, C5×D5, C22×Dic5, C22×C20, C5×Dic5, D5×C10, C10×Dic5, D5×C2×C10, Dic5×C2×C10

Smallest permutation representation of Dic5×C2×C10
On 80 points
Generators in S80
(1 36)(2 37)(3 38)(4 39)(5 40)(6 31)(7 32)(8 33)(9 34)(10 35)(11 59)(12 60)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 45)(22 46)(23 47)(24 48)(25 49)(26 50)(27 41)(28 42)(29 43)(30 44)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 71)(68 72)(69 73)(70 74)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 22 9 30 7 28 5 26 3 24)(2 23 10 21 8 29 6 27 4 25)(11 75 13 77 15 79 17 71 19 73)(12 76 14 78 16 80 18 72 20 74)(31 41 39 49 37 47 35 45 33 43)(32 42 40 50 38 48 36 46 34 44)(51 63 53 65 55 67 57 69 59 61)(52 64 54 66 56 68 58 70 60 62)
(1 76 28 18)(2 77 29 19)(3 78 30 20)(4 79 21 11)(5 80 22 12)(6 71 23 13)(7 72 24 14)(8 73 25 15)(9 74 26 16)(10 75 27 17)(31 67 47 51)(32 68 48 52)(33 69 49 53)(34 70 50 54)(35 61 41 55)(36 62 42 56)(37 63 43 57)(38 64 44 58)(39 65 45 59)(40 66 46 60)

G:=sub<Sym(80)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,41)(28,42)(29,43)(30,44)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,71)(68,72)(69,73)(70,74), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,22,9,30,7,28,5,26,3,24)(2,23,10,21,8,29,6,27,4,25)(11,75,13,77,15,79,17,71,19,73)(12,76,14,78,16,80,18,72,20,74)(31,41,39,49,37,47,35,45,33,43)(32,42,40,50,38,48,36,46,34,44)(51,63,53,65,55,67,57,69,59,61)(52,64,54,66,56,68,58,70,60,62), (1,76,28,18)(2,77,29,19)(3,78,30,20)(4,79,21,11)(5,80,22,12)(6,71,23,13)(7,72,24,14)(8,73,25,15)(9,74,26,16)(10,75,27,17)(31,67,47,51)(32,68,48,52)(33,69,49,53)(34,70,50,54)(35,61,41,55)(36,62,42,56)(37,63,43,57)(38,64,44,58)(39,65,45,59)(40,66,46,60)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,41)(28,42)(29,43)(30,44)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,71)(68,72)(69,73)(70,74), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,22,9,30,7,28,5,26,3,24)(2,23,10,21,8,29,6,27,4,25)(11,75,13,77,15,79,17,71,19,73)(12,76,14,78,16,80,18,72,20,74)(31,41,39,49,37,47,35,45,33,43)(32,42,40,50,38,48,36,46,34,44)(51,63,53,65,55,67,57,69,59,61)(52,64,54,66,56,68,58,70,60,62), (1,76,28,18)(2,77,29,19)(3,78,30,20)(4,79,21,11)(5,80,22,12)(6,71,23,13)(7,72,24,14)(8,73,25,15)(9,74,26,16)(10,75,27,17)(31,67,47,51)(32,68,48,52)(33,69,49,53)(34,70,50,54)(35,61,41,55)(36,62,42,56)(37,63,43,57)(38,64,44,58)(39,65,45,59)(40,66,46,60) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,31),(7,32),(8,33),(9,34),(10,35),(11,59),(12,60),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,45),(22,46),(23,47),(24,48),(25,49),(26,50),(27,41),(28,42),(29,43),(30,44),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,71),(68,72),(69,73),(70,74)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,22,9,30,7,28,5,26,3,24),(2,23,10,21,8,29,6,27,4,25),(11,75,13,77,15,79,17,71,19,73),(12,76,14,78,16,80,18,72,20,74),(31,41,39,49,37,47,35,45,33,43),(32,42,40,50,38,48,36,46,34,44),(51,63,53,65,55,67,57,69,59,61),(52,64,54,66,56,68,58,70,60,62)], [(1,76,28,18),(2,77,29,19),(3,78,30,20),(4,79,21,11),(5,80,22,12),(6,71,23,13),(7,72,24,14),(8,73,25,15),(9,74,26,16),(10,75,27,17),(31,67,47,51),(32,68,48,52),(33,69,49,53),(34,70,50,54),(35,61,41,55),(36,62,42,56),(37,63,43,57),(38,64,44,58),(39,65,45,59),(40,66,46,60)]])

160 conjugacy classes

class 1 2A···2G4A···4H5A5B5C5D5E···5N10A···10AB10AC···10CT20A···20AF
order12···24···455555···510···1010···1020···20
size11···15···511112···21···12···25···5

160 irreducible representations

dim11111111222222
type++++-+
imageC1C2C2C4C5C10C10C20D5Dic5D10C5×D5C5×Dic5D5×C10
kernelDic5×C2×C10C10×Dic5C2×C102C102C22×Dic5C2×Dic5C22×C10C2×C10C22×C10C2×C10C2×C10C23C22C22
# reps161842443228683224

Matrix representation of Dic5×C2×C10 in GL4(𝔽41) generated by

1000
0100
00400
00040
,
31000
03100
00370
00037
,
40000
0100
00100
003837
,
9000
04000
00132
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[31,0,0,0,0,31,0,0,0,0,37,0,0,0,0,37],[40,0,0,0,0,1,0,0,0,0,10,38,0,0,0,37],[9,0,0,0,0,40,0,0,0,0,1,0,0,0,32,40] >;

Dic5×C2×C10 in GAP, Magma, Sage, TeX

{\rm Dic}_5\times C_2\times C_{10}
% in TeX

G:=Group("Dic5xC2xC10");
// GroupNames label

G:=SmallGroup(400,189);
// by ID

G=gap.SmallGroup(400,189);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-5,240,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^10=1,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽