Copied to
clipboard

G = Dic5xC2xC10order 400 = 24·52

Direct product of C2xC10 and Dic5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic5xC2xC10, C102:12C4, C102.30C22, (C2xC10):5C20, C10:3(C2xC20), C5:3(C22xC20), C23.2(C5xD5), (C2xC10).48D10, (C2xC102).4C2, C52:12(C22xC4), (C22xC10).8D5, (C5xC10).27C23, C10.9(C22xC10), (C22xC10).5C10, C10.48(C22xD5), C22.11(D5xC10), C2.2(D5xC2xC10), (C5xC10):11(C2xC4), (C2xC10).14(C2xC10), SmallGroup(400,189)

Series: Derived Chief Lower central Upper central

C1C5 — Dic5xC2xC10
C1C5C10C5xC10C5xDic5C10xDic5 — Dic5xC2xC10
C5 — Dic5xC2xC10
C1C22xC10

Generators and relations for Dic5xC2xC10
 G = < a,b,c,d | a2=b10=c10=1, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 260 in 140 conjugacy classes, 86 normal (14 characteristic)
C1, C2, C2, C4, C22, C5, C5, C2xC4, C23, C10, C10, C10, C22xC4, Dic5, C20, C2xC10, C2xC10, C52, C2xDic5, C2xC20, C22xC10, C22xC10, C5xC10, C5xC10, C22xDic5, C22xC20, C5xDic5, C102, C10xDic5, C2xC102, Dic5xC2xC10
Quotients: C1, C2, C4, C22, C5, C2xC4, C23, D5, C10, C22xC4, Dic5, C20, D10, C2xC10, C2xDic5, C2xC20, C22xD5, C22xC10, C5xD5, C22xDic5, C22xC20, C5xDic5, D5xC10, C10xDic5, D5xC2xC10, Dic5xC2xC10

Smallest permutation representation of Dic5xC2xC10
On 80 points
Generators in S80
(1 36)(2 37)(3 38)(4 39)(5 40)(6 31)(7 32)(8 33)(9 34)(10 35)(11 59)(12 60)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 45)(22 46)(23 47)(24 48)(25 49)(26 50)(27 41)(28 42)(29 43)(30 44)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 71)(68 72)(69 73)(70 74)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 22 9 30 7 28 5 26 3 24)(2 23 10 21 8 29 6 27 4 25)(11 75 13 77 15 79 17 71 19 73)(12 76 14 78 16 80 18 72 20 74)(31 41 39 49 37 47 35 45 33 43)(32 42 40 50 38 48 36 46 34 44)(51 63 53 65 55 67 57 69 59 61)(52 64 54 66 56 68 58 70 60 62)
(1 76 28 18)(2 77 29 19)(3 78 30 20)(4 79 21 11)(5 80 22 12)(6 71 23 13)(7 72 24 14)(8 73 25 15)(9 74 26 16)(10 75 27 17)(31 67 47 51)(32 68 48 52)(33 69 49 53)(34 70 50 54)(35 61 41 55)(36 62 42 56)(37 63 43 57)(38 64 44 58)(39 65 45 59)(40 66 46 60)

G:=sub<Sym(80)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,41)(28,42)(29,43)(30,44)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,71)(68,72)(69,73)(70,74), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,22,9,30,7,28,5,26,3,24)(2,23,10,21,8,29,6,27,4,25)(11,75,13,77,15,79,17,71,19,73)(12,76,14,78,16,80,18,72,20,74)(31,41,39,49,37,47,35,45,33,43)(32,42,40,50,38,48,36,46,34,44)(51,63,53,65,55,67,57,69,59,61)(52,64,54,66,56,68,58,70,60,62), (1,76,28,18)(2,77,29,19)(3,78,30,20)(4,79,21,11)(5,80,22,12)(6,71,23,13)(7,72,24,14)(8,73,25,15)(9,74,26,16)(10,75,27,17)(31,67,47,51)(32,68,48,52)(33,69,49,53)(34,70,50,54)(35,61,41,55)(36,62,42,56)(37,63,43,57)(38,64,44,58)(39,65,45,59)(40,66,46,60)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,59)(12,60)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,41)(28,42)(29,43)(30,44)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,71)(68,72)(69,73)(70,74), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,22,9,30,7,28,5,26,3,24)(2,23,10,21,8,29,6,27,4,25)(11,75,13,77,15,79,17,71,19,73)(12,76,14,78,16,80,18,72,20,74)(31,41,39,49,37,47,35,45,33,43)(32,42,40,50,38,48,36,46,34,44)(51,63,53,65,55,67,57,69,59,61)(52,64,54,66,56,68,58,70,60,62), (1,76,28,18)(2,77,29,19)(3,78,30,20)(4,79,21,11)(5,80,22,12)(6,71,23,13)(7,72,24,14)(8,73,25,15)(9,74,26,16)(10,75,27,17)(31,67,47,51)(32,68,48,52)(33,69,49,53)(34,70,50,54)(35,61,41,55)(36,62,42,56)(37,63,43,57)(38,64,44,58)(39,65,45,59)(40,66,46,60) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,31),(7,32),(8,33),(9,34),(10,35),(11,59),(12,60),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,45),(22,46),(23,47),(24,48),(25,49),(26,50),(27,41),(28,42),(29,43),(30,44),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,71),(68,72),(69,73),(70,74)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,22,9,30,7,28,5,26,3,24),(2,23,10,21,8,29,6,27,4,25),(11,75,13,77,15,79,17,71,19,73),(12,76,14,78,16,80,18,72,20,74),(31,41,39,49,37,47,35,45,33,43),(32,42,40,50,38,48,36,46,34,44),(51,63,53,65,55,67,57,69,59,61),(52,64,54,66,56,68,58,70,60,62)], [(1,76,28,18),(2,77,29,19),(3,78,30,20),(4,79,21,11),(5,80,22,12),(6,71,23,13),(7,72,24,14),(8,73,25,15),(9,74,26,16),(10,75,27,17),(31,67,47,51),(32,68,48,52),(33,69,49,53),(34,70,50,54),(35,61,41,55),(36,62,42,56),(37,63,43,57),(38,64,44,58),(39,65,45,59),(40,66,46,60)]])

160 conjugacy classes

class 1 2A···2G4A···4H5A5B5C5D5E···5N10A···10AB10AC···10CT20A···20AF
order12···24···455555···510···1010···1020···20
size11···15···511112···21···12···25···5

160 irreducible representations

dim11111111222222
type++++-+
imageC1C2C2C4C5C10C10C20D5Dic5D10C5xD5C5xDic5D5xC10
kernelDic5xC2xC10C10xDic5C2xC102C102C22xDic5C2xDic5C22xC10C2xC10C22xC10C2xC10C2xC10C23C22C22
# reps161842443228683224

Matrix representation of Dic5xC2xC10 in GL4(F41) generated by

1000
0100
00400
00040
,
31000
03100
00370
00037
,
40000
0100
00100
003837
,
9000
04000
00132
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[31,0,0,0,0,31,0,0,0,0,37,0,0,0,0,37],[40,0,0,0,0,1,0,0,0,0,10,38,0,0,0,37],[9,0,0,0,0,40,0,0,0,0,1,0,0,0,32,40] >;

Dic5xC2xC10 in GAP, Magma, Sage, TeX

{\rm Dic}_5\times C_2\times C_{10}
% in TeX

G:=Group("Dic5xC2xC10");
// GroupNames label

G:=SmallGroup(400,189);
// by ID

G=gap.SmallGroup(400,189);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-5,240,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^10=1,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<