direct product, metacyclic, supersoluble, monomial
Aliases: C5×C4.Dic5, C20.4C20, C20.67D10, C102.11C4, C20.12Dic5, C52⋊17M4(2), C5⋊2C8⋊5C10, C4.(C5×Dic5), (C2×C20).7C10, (C10×C20).7C2, (C2×C10).7C20, (C5×C20).14C4, (C2×C20).18D5, C4.15(D5×C10), C5⋊4(C5×M4(2)), C20.16(C2×C10), C10.13(C2×C20), C22.(C5×Dic5), C2.3(C10×Dic5), (C2×C10).3Dic5, (C5×C20).45C22, C10.25(C2×Dic5), (C5×C5⋊2C8)⋊12C2, (C2×C4).2(C5×D5), (C5×C10).61(C2×C4), SmallGroup(400,82)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C4.Dic5
G = < a,b,c,d | a5=b4=1, c10=b2, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c9 >
Subgroups: 100 in 56 conjugacy classes, 30 normal (26 characteristic)
C1, C2, C2, C4, C22, C5, C5, C8, C2×C4, C10, C10, M4(2), C20, C20, C2×C10, C2×C10, C52, C5⋊2C8, C40, C2×C20, C2×C20, C5×C10, C5×C10, C4.Dic5, C5×M4(2), C5×C20, C102, C5×C5⋊2C8, C10×C20, C5×C4.Dic5
Quotients: C1, C2, C4, C22, C5, C2×C4, D5, C10, M4(2), Dic5, C20, D10, C2×C10, C2×Dic5, C2×C20, C5×D5, C4.Dic5, C5×M4(2), C5×Dic5, D5×C10, C10×Dic5, C5×C4.Dic5
(1 17 13 9 5)(2 18 14 10 6)(3 19 15 11 7)(4 20 16 12 8)(21 25 29 33 37)(22 26 30 34 38)(23 27 31 35 39)(24 28 32 36 40)
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 30 6 35 11 40 16 25)(2 39 7 24 12 29 17 34)(3 28 8 33 13 38 18 23)(4 37 9 22 14 27 19 32)(5 26 10 31 15 36 20 21)
G:=sub<Sym(40)| (1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)(21,25,29,33,37)(22,26,30,34,38)(23,27,31,35,39)(24,28,32,36,40), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,30,6,35,11,40,16,25)(2,39,7,24,12,29,17,34)(3,28,8,33,13,38,18,23)(4,37,9,22,14,27,19,32)(5,26,10,31,15,36,20,21)>;
G:=Group( (1,17,13,9,5)(2,18,14,10,6)(3,19,15,11,7)(4,20,16,12,8)(21,25,29,33,37)(22,26,30,34,38)(23,27,31,35,39)(24,28,32,36,40), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,30,6,35,11,40,16,25)(2,39,7,24,12,29,17,34)(3,28,8,33,13,38,18,23)(4,37,9,22,14,27,19,32)(5,26,10,31,15,36,20,21) );
G=PermutationGroup([[(1,17,13,9,5),(2,18,14,10,6),(3,19,15,11,7),(4,20,16,12,8),(21,25,29,33,37),(22,26,30,34,38),(23,27,31,35,39),(24,28,32,36,40)], [(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,36,31,26),(22,37,32,27),(23,38,33,28),(24,39,34,29),(25,40,35,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,30,6,35,11,40,16,25),(2,39,7,24,12,29,17,34),(3,28,8,33,13,38,18,23),(4,37,9,22,14,27,19,32),(5,26,10,31,15,36,20,21)]])
130 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 5E | ··· | 5N | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | ··· | 10AL | 20A | ··· | 20H | 20I | ··· | 20AZ | 40A | ··· | 40P |
order | 1 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 10 | 10 | 10 | 10 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 10 | ··· | 10 |
130 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | |||||||||||||||
image | C1 | C2 | C2 | C4 | C4 | C5 | C10 | C10 | C20 | C20 | D5 | M4(2) | Dic5 | D10 | Dic5 | C5×D5 | C4.Dic5 | C5×M4(2) | C5×Dic5 | D5×C10 | C5×Dic5 | C5×C4.Dic5 |
kernel | C5×C4.Dic5 | C5×C5⋊2C8 | C10×C20 | C5×C20 | C102 | C4.Dic5 | C5⋊2C8 | C2×C20 | C20 | C2×C10 | C2×C20 | C52 | C20 | C20 | C2×C10 | C2×C4 | C5 | C5 | C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 8 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | 32 |
Matrix representation of C5×C4.Dic5 ►in GL2(𝔽41) generated by
18 | 0 |
0 | 18 |
9 | 2 |
0 | 32 |
39 | 2 |
0 | 21 |
24 | 18 |
30 | 17 |
G:=sub<GL(2,GF(41))| [18,0,0,18],[9,0,2,32],[39,0,2,21],[24,30,18,17] >;
C5×C4.Dic5 in GAP, Magma, Sage, TeX
C_5\times C_4.{\rm Dic}_5
% in TeX
G:=Group("C5xC4.Dic5");
// GroupNames label
G:=SmallGroup(400,82);
// by ID
G=gap.SmallGroup(400,82);
# by ID
G:=PCGroup([6,-2,-2,-5,-2,-2,-5,120,505,69,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^4=1,c^10=b^2,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^9>;
// generators/relations