Extensions 1→N→G→Q→1 with N=C26 and Q=SD16

Direct product G=N×Q with N=C26 and Q=SD16
dρLabelID
SD16×C26208SD16xC26416,194

Semidirect products G=N:Q with N=C26 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C261SD16 = C2×C104⋊C2φ: SD16/C8C2 ⊆ Aut C26208C26:1SD16416,123
C262SD16 = C2×D4.D13φ: SD16/D4C2 ⊆ Aut C26208C26:2SD16416,154
C263SD16 = C2×Q8⋊D13φ: SD16/Q8C2 ⊆ Aut C26208C26:3SD16416,162

Non-split extensions G=N.Q with N=C26 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C26.1SD16 = C52.44D4φ: SD16/C8C2 ⊆ Aut C26416C26.1SD16416,23
C26.2SD16 = C1046C4φ: SD16/C8C2 ⊆ Aut C26416C26.2SD16416,24
C26.3SD16 = D525C4φ: SD16/C8C2 ⊆ Aut C26208C26.3SD16416,28
C26.4SD16 = C52.Q8φ: SD16/D4C2 ⊆ Aut C26416C26.4SD16416,15
C26.5SD16 = C26.Q16φ: SD16/D4C2 ⊆ Aut C26416C26.5SD16416,17
C26.6SD16 = D4⋊Dic13φ: SD16/D4C2 ⊆ Aut C26208C26.6SD16416,39
C26.7SD16 = D526C4φ: SD16/Q8C2 ⊆ Aut C26208C26.7SD16416,16
C26.8SD16 = Q8⋊Dic13φ: SD16/Q8C2 ⊆ Aut C26416C26.8SD16416,42
C26.9SD16 = C13×D4⋊C4central extension (φ=1)208C26.9SD16416,52
C26.10SD16 = C13×Q8⋊C4central extension (φ=1)416C26.10SD16416,53
C26.11SD16 = C13×C4.Q8central extension (φ=1)416C26.11SD16416,56

׿
×
𝔽