# Extensions 1→N→G→Q→1 with N=C4 and Q=D4×C13

Direct product G=N×Q with N=C4 and Q=D4×C13
dρLabelID
D4×C52208D4xC52416,179

Semidirect products G=N:Q with N=C4 and Q=D4×C13
extensionφ:Q→Aut NdρLabelID
C41(D4×C13) = C13×C41D4φ: D4×C13/C52C2 ⊆ Aut C4208C4:1(D4xC13)416,188
C42(D4×C13) = C13×C4⋊D4φ: D4×C13/C2×C26C2 ⊆ Aut C4208C4:2(D4xC13)416,182

Non-split extensions G=N.Q with N=C4 and Q=D4×C13
extensionφ:Q→Aut NdρLabelID
C4.1(D4×C13) = C13×D16φ: D4×C13/C52C2 ⊆ Aut C42082C4.1(D4xC13)416,61
C4.2(D4×C13) = C13×SD32φ: D4×C13/C52C2 ⊆ Aut C42082C4.2(D4xC13)416,62
C4.3(D4×C13) = C13×Q32φ: D4×C13/C52C2 ⊆ Aut C44162C4.3(D4xC13)416,63
C4.4(D4×C13) = C13×C4.4D4φ: D4×C13/C52C2 ⊆ Aut C4208C4.4(D4xC13)416,185
C4.5(D4×C13) = C13×C4⋊Q8φ: D4×C13/C52C2 ⊆ Aut C4416C4.5(D4xC13)416,189
C4.6(D4×C13) = D8×C26φ: D4×C13/C52C2 ⊆ Aut C4208C4.6(D4xC13)416,193
C4.7(D4×C13) = SD16×C26φ: D4×C13/C52C2 ⊆ Aut C4208C4.7(D4xC13)416,194
C4.8(D4×C13) = Q16×C26φ: D4×C13/C52C2 ⊆ Aut C4416C4.8(D4xC13)416,195
C4.9(D4×C13) = C13×C4.D4φ: D4×C13/C2×C26C2 ⊆ Aut C41044C4.9(D4xC13)416,50
C4.10(D4×C13) = C13×C4.10D4φ: D4×C13/C2×C26C2 ⊆ Aut C42084C4.10(D4xC13)416,51
C4.11(D4×C13) = C13×D4⋊C4φ: D4×C13/C2×C26C2 ⊆ Aut C4208C4.11(D4xC13)416,52
C4.12(D4×C13) = C13×Q8⋊C4φ: D4×C13/C2×C26C2 ⊆ Aut C4416C4.12(D4xC13)416,53
C4.13(D4×C13) = C13×C22⋊Q8φ: D4×C13/C2×C26C2 ⊆ Aut C4208C4.13(D4xC13)416,183
C4.14(D4×C13) = C13×C8⋊C22φ: D4×C13/C2×C26C2 ⊆ Aut C41044C4.14(D4xC13)416,197
C4.15(D4×C13) = C13×C8.C22φ: D4×C13/C2×C26C2 ⊆ Aut C42084C4.15(D4xC13)416,198
C4.16(D4×C13) = C13×C22⋊C8central extension (φ=1)208C4.16(D4xC13)416,48
C4.17(D4×C13) = C13×C4≀C2central extension (φ=1)1042C4.17(D4xC13)416,54
C4.18(D4×C13) = C13×C4⋊C8central extension (φ=1)416C4.18(D4xC13)416,55
C4.19(D4×C13) = C13×C8.C4central extension (φ=1)2082C4.19(D4xC13)416,58
C4.20(D4×C13) = C13×C4○D8central extension (φ=1)2082C4.20(D4xC13)416,196

׿
×
𝔽