Copied to
clipboard

G = C13×C4.D4order 416 = 25·13

Direct product of C13 and C4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C13×C4.D4, C23.C52, C52.58D4, M4(2)⋊3C26, C4.9(D4×C13), (D4×C26).8C2, (C2×D4).2C26, (C22×C26).1C4, C22.3(C2×C52), (C13×M4(2))⋊9C2, (C2×C52).59C22, C26.33(C22⋊C4), (C2×C4).1(C2×C26), (C2×C26).40(C2×C4), C2.4(C13×C22⋊C4), SmallGroup(416,50)

Series: Derived Chief Lower central Upper central

C1C22 — C13×C4.D4
C1C2C4C2×C4C2×C52C13×M4(2) — C13×C4.D4
C1C2C22 — C13×C4.D4
C1C26C2×C52 — C13×C4.D4

Generators and relations for C13×C4.D4
 G = < a,b,c,d | a13=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

2C2
4C2
4C2
2C22
2C22
4C22
4C22
2C26
4C26
4C26
2D4
2C8
2D4
2C8
2C2×C26
2C2×C26
4C2×C26
4C2×C26
2D4×C13
2C104
2C104
2D4×C13

Smallest permutation representation of C13×C4.D4
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 62 49 14)(2 63 50 15)(3 64 51 16)(4 65 52 17)(5 53 40 18)(6 54 41 19)(7 55 42 20)(8 56 43 21)(9 57 44 22)(10 58 45 23)(11 59 46 24)(12 60 47 25)(13 61 48 26)(27 101 90 73)(28 102 91 74)(29 103 79 75)(30 104 80 76)(31 92 81 77)(32 93 82 78)(33 94 83 66)(34 95 84 67)(35 96 85 68)(36 97 86 69)(37 98 87 70)(38 99 88 71)(39 100 89 72)
(1 83 62 94 49 33 14 66)(2 84 63 95 50 34 15 67)(3 85 64 96 51 35 16 68)(4 86 65 97 52 36 17 69)(5 87 53 98 40 37 18 70)(6 88 54 99 41 38 19 71)(7 89 55 100 42 39 20 72)(8 90 56 101 43 27 21 73)(9 91 57 102 44 28 22 74)(10 79 58 103 45 29 23 75)(11 80 59 104 46 30 24 76)(12 81 60 92 47 31 25 77)(13 82 61 93 48 32 26 78)
(1 33 62 94 49 83 14 66)(2 34 63 95 50 84 15 67)(3 35 64 96 51 85 16 68)(4 36 65 97 52 86 17 69)(5 37 53 98 40 87 18 70)(6 38 54 99 41 88 19 71)(7 39 55 100 42 89 20 72)(8 27 56 101 43 90 21 73)(9 28 57 102 44 91 22 74)(10 29 58 103 45 79 23 75)(11 30 59 104 46 80 24 76)(12 31 60 92 47 81 25 77)(13 32 61 93 48 82 26 78)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,62,49,14)(2,63,50,15)(3,64,51,16)(4,65,52,17)(5,53,40,18)(6,54,41,19)(7,55,42,20)(8,56,43,21)(9,57,44,22)(10,58,45,23)(11,59,46,24)(12,60,47,25)(13,61,48,26)(27,101,90,73)(28,102,91,74)(29,103,79,75)(30,104,80,76)(31,92,81,77)(32,93,82,78)(33,94,83,66)(34,95,84,67)(35,96,85,68)(36,97,86,69)(37,98,87,70)(38,99,88,71)(39,100,89,72), (1,83,62,94,49,33,14,66)(2,84,63,95,50,34,15,67)(3,85,64,96,51,35,16,68)(4,86,65,97,52,36,17,69)(5,87,53,98,40,37,18,70)(6,88,54,99,41,38,19,71)(7,89,55,100,42,39,20,72)(8,90,56,101,43,27,21,73)(9,91,57,102,44,28,22,74)(10,79,58,103,45,29,23,75)(11,80,59,104,46,30,24,76)(12,81,60,92,47,31,25,77)(13,82,61,93,48,32,26,78), (1,33,62,94,49,83,14,66)(2,34,63,95,50,84,15,67)(3,35,64,96,51,85,16,68)(4,36,65,97,52,86,17,69)(5,37,53,98,40,87,18,70)(6,38,54,99,41,88,19,71)(7,39,55,100,42,89,20,72)(8,27,56,101,43,90,21,73)(9,28,57,102,44,91,22,74)(10,29,58,103,45,79,23,75)(11,30,59,104,46,80,24,76)(12,31,60,92,47,81,25,77)(13,32,61,93,48,82,26,78)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,62,49,14)(2,63,50,15)(3,64,51,16)(4,65,52,17)(5,53,40,18)(6,54,41,19)(7,55,42,20)(8,56,43,21)(9,57,44,22)(10,58,45,23)(11,59,46,24)(12,60,47,25)(13,61,48,26)(27,101,90,73)(28,102,91,74)(29,103,79,75)(30,104,80,76)(31,92,81,77)(32,93,82,78)(33,94,83,66)(34,95,84,67)(35,96,85,68)(36,97,86,69)(37,98,87,70)(38,99,88,71)(39,100,89,72), (1,83,62,94,49,33,14,66)(2,84,63,95,50,34,15,67)(3,85,64,96,51,35,16,68)(4,86,65,97,52,36,17,69)(5,87,53,98,40,37,18,70)(6,88,54,99,41,38,19,71)(7,89,55,100,42,39,20,72)(8,90,56,101,43,27,21,73)(9,91,57,102,44,28,22,74)(10,79,58,103,45,29,23,75)(11,80,59,104,46,30,24,76)(12,81,60,92,47,31,25,77)(13,82,61,93,48,32,26,78), (1,33,62,94,49,83,14,66)(2,34,63,95,50,84,15,67)(3,35,64,96,51,85,16,68)(4,36,65,97,52,86,17,69)(5,37,53,98,40,87,18,70)(6,38,54,99,41,88,19,71)(7,39,55,100,42,89,20,72)(8,27,56,101,43,90,21,73)(9,28,57,102,44,91,22,74)(10,29,58,103,45,79,23,75)(11,30,59,104,46,80,24,76)(12,31,60,92,47,81,25,77)(13,32,61,93,48,82,26,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,62,49,14),(2,63,50,15),(3,64,51,16),(4,65,52,17),(5,53,40,18),(6,54,41,19),(7,55,42,20),(8,56,43,21),(9,57,44,22),(10,58,45,23),(11,59,46,24),(12,60,47,25),(13,61,48,26),(27,101,90,73),(28,102,91,74),(29,103,79,75),(30,104,80,76),(31,92,81,77),(32,93,82,78),(33,94,83,66),(34,95,84,67),(35,96,85,68),(36,97,86,69),(37,98,87,70),(38,99,88,71),(39,100,89,72)], [(1,83,62,94,49,33,14,66),(2,84,63,95,50,34,15,67),(3,85,64,96,51,35,16,68),(4,86,65,97,52,36,17,69),(5,87,53,98,40,37,18,70),(6,88,54,99,41,38,19,71),(7,89,55,100,42,39,20,72),(8,90,56,101,43,27,21,73),(9,91,57,102,44,28,22,74),(10,79,58,103,45,29,23,75),(11,80,59,104,46,30,24,76),(12,81,60,92,47,31,25,77),(13,82,61,93,48,32,26,78)], [(1,33,62,94,49,83,14,66),(2,34,63,95,50,84,15,67),(3,35,64,96,51,85,16,68),(4,36,65,97,52,86,17,69),(5,37,53,98,40,87,18,70),(6,38,54,99,41,88,19,71),(7,39,55,100,42,89,20,72),(8,27,56,101,43,90,21,73),(9,28,57,102,44,91,22,74),(10,29,58,103,45,79,23,75),(11,30,59,104,46,80,24,76),(12,31,60,92,47,81,25,77),(13,32,61,93,48,82,26,78)]])

143 conjugacy classes

class 1 2A2B2C2D4A4B8A8B8C8D13A···13L26A···26L26M···26X26Y···26AV52A···52X104A···104AV
order1222244888813···1326···2626···2626···2652···52104···104
size112442244441···11···12···24···42···24···4

143 irreducible representations

dim111111112244
type+++++
imageC1C2C2C4C13C26C26C52D4D4×C13C4.D4C13×C4.D4
kernelC13×C4.D4C13×M4(2)D4×C26C22×C26C4.D4M4(2)C2×D4C23C52C4C13C1
# reps121412241248224112

Matrix representation of C13×C4.D4 in GL4(𝔽313) generated by

48000
04800
00480
00048
,
0100
312000
4516801
1682683120
,
1481233110
21318802
107162165123
5459213125
,
1481233110
1001250311
200200165190
3534213188
G:=sub<GL(4,GF(313))| [48,0,0,0,0,48,0,0,0,0,48,0,0,0,0,48],[0,312,45,168,1,0,168,268,0,0,0,312,0,0,1,0],[148,213,107,54,123,188,162,59,311,0,165,213,0,2,123,125],[148,100,200,35,123,125,200,34,311,0,165,213,0,311,190,188] >;

C13×C4.D4 in GAP, Magma, Sage, TeX

C_{13}\times C_4.D_4
% in TeX

G:=Group("C13xC4.D4");
// GroupNames label

G:=SmallGroup(416,50);
// by ID

G=gap.SmallGroup(416,50);
# by ID

G:=PCGroup([6,-2,-2,-13,-2,-2,-2,624,649,6243,4690,88]);
// Polycyclic

G:=Group<a,b,c,d|a^13=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

Export

Subgroup lattice of C13×C4.D4 in TeX

׿
×
𝔽