extension | φ:Q→Aut N | d | ρ | Label | ID |
C26.1(C4○D4) = C4×Dic26 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 416 | | C26.1(C4oD4) | 416,89 |
C26.2(C4○D4) = C52.6Q8 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 416 | | C26.2(C4oD4) | 416,91 |
C26.3(C4○D4) = C42⋊D13 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.3(C4oD4) | 416,93 |
C26.4(C4○D4) = C4×D52 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.4(C4oD4) | 416,94 |
C26.5(C4○D4) = C4.D52 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.5(C4oD4) | 416,96 |
C26.6(C4○D4) = C42⋊2D13 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.6(C4oD4) | 416,97 |
C26.7(C4○D4) = C23.D26 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.7(C4oD4) | 416,100 |
C26.8(C4○D4) = D26.12D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.8(C4oD4) | 416,104 |
C26.9(C4○D4) = D26⋊D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.9(C4oD4) | 416,105 |
C26.10(C4○D4) = C23.6D26 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.10(C4oD4) | 416,106 |
C26.11(C4○D4) = Dic13.Q8 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 416 | | C26.11(C4oD4) | 416,110 |
C26.12(C4○D4) = D26.13D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.12(C4oD4) | 416,115 |
C26.13(C4○D4) = D26⋊Q8 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.13(C4oD4) | 416,117 |
C26.14(C4○D4) = C4⋊C4⋊D13 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.14(C4oD4) | 416,119 |
C26.15(C4○D4) = C52.48D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.15(C4oD4) | 416,145 |
C26.16(C4○D4) = C23.21D26 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.16(C4oD4) | 416,147 |
C26.17(C4○D4) = C4×C13⋊D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.17(C4oD4) | 416,149 |
C26.18(C4○D4) = C23.23D26 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.18(C4oD4) | 416,150 |
C26.19(C4○D4) = C52⋊7D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C26 | 208 | | C26.19(C4oD4) | 416,151 |
C26.20(C4○D4) = C23.11D26 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.20(C4oD4) | 416,98 |
C26.21(C4○D4) = C22⋊Dic26 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.21(C4oD4) | 416,99 |
C26.22(C4○D4) = Dic13⋊4D4 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.22(C4oD4) | 416,102 |
C26.23(C4○D4) = C22.D52 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.23(C4oD4) | 416,107 |
C26.24(C4○D4) = Dic13⋊3Q8 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 416 | | C26.24(C4oD4) | 416,108 |
C26.25(C4○D4) = C4.Dic26 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 416 | | C26.25(C4oD4) | 416,111 |
C26.26(C4○D4) = C4⋊C4⋊7D13 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.26(C4oD4) | 416,113 |
C26.27(C4○D4) = D26⋊2Q8 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.27(C4oD4) | 416,118 |
C26.28(C4○D4) = D4×Dic13 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.28(C4oD4) | 416,155 |
C26.29(C4○D4) = C23.18D26 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.29(C4oD4) | 416,156 |
C26.30(C4○D4) = C52.17D4 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.30(C4oD4) | 416,157 |
C26.31(C4○D4) = C52⋊2D4 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.31(C4oD4) | 416,159 |
C26.32(C4○D4) = Dic13⋊D4 | φ: C4○D4/D4 → C2 ⊆ Aut C26 | 208 | | C26.32(C4oD4) | 416,160 |
C26.33(C4○D4) = D52⋊8C4 | φ: C4○D4/Q8 → C2 ⊆ Aut C26 | 208 | | C26.33(C4oD4) | 416,114 |
C26.34(C4○D4) = C4⋊2D52 | φ: C4○D4/Q8 → C2 ⊆ Aut C26 | 208 | | C26.34(C4oD4) | 416,116 |
C26.35(C4○D4) = Q8×Dic13 | φ: C4○D4/Q8 → C2 ⊆ Aut C26 | 416 | | C26.35(C4oD4) | 416,166 |
C26.36(C4○D4) = D26⋊3Q8 | φ: C4○D4/Q8 → C2 ⊆ Aut C26 | 208 | | C26.36(C4oD4) | 416,167 |
C26.37(C4○D4) = C52.23D4 | φ: C4○D4/Q8 → C2 ⊆ Aut C26 | 208 | | C26.37(C4oD4) | 416,168 |
C26.38(C4○D4) = C13×C42⋊C2 | central extension (φ=1) | 208 | | C26.38(C4oD4) | 416,178 |
C26.39(C4○D4) = D4×C52 | central extension (φ=1) | 208 | | C26.39(C4oD4) | 416,179 |
C26.40(C4○D4) = Q8×C52 | central extension (φ=1) | 416 | | C26.40(C4oD4) | 416,180 |
C26.41(C4○D4) = C13×C4⋊D4 | central extension (φ=1) | 208 | | C26.41(C4oD4) | 416,182 |
C26.42(C4○D4) = C13×C22⋊Q8 | central extension (φ=1) | 208 | | C26.42(C4oD4) | 416,183 |
C26.43(C4○D4) = C13×C22.D4 | central extension (φ=1) | 208 | | C26.43(C4oD4) | 416,184 |
C26.44(C4○D4) = C13×C4.4D4 | central extension (φ=1) | 208 | | C26.44(C4oD4) | 416,185 |
C26.45(C4○D4) = C13×C42.C2 | central extension (φ=1) | 416 | | C26.45(C4oD4) | 416,186 |
C26.46(C4○D4) = C13×C42⋊2C2 | central extension (φ=1) | 208 | | C26.46(C4oD4) | 416,187 |