extension | φ:Q→Aut N | d | ρ | Label | ID |
C52.1(C2xC4) = D52:1C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C52 | 104 | 8+ | C52.1(C2xC4) | 416,82 |
C52.2(C2xC4) = Dic26:C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C52 | 104 | 8- | C52.2(C2xC4) | 416,83 |
C52.3(C2xC4) = D13.Q16 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C52 | 104 | 8- | C52.3(C2xC4) | 416,84 |
C52.4(C2xC4) = D52:C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C52 | 104 | 8+ | C52.4(C2xC4) | 416,85 |
C52.5(C2xC4) = Dic26.C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C52 | 208 | 8- | C52.5(C2xC4) | 416,205 |
C52.6(C2xC4) = D52.C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C52 | 208 | 8+ | C52.6(C2xC4) | 416,207 |
C52.7(C2xC4) = Q8xC13:C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C52 | 104 | 8- | C52.7(C2xC4) | 416,208 |
C52.8(C2xC4) = D26.8D4 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 104 | 4 | C52.8(C2xC4) | 416,68 |
C52.9(C2xC4) = D13.D8 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 104 | 4 | C52.9(C2xC4) | 416,69 |
C52.10(C2xC4) = C104.C4 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 208 | 4 | C52.10(C2xC4) | 416,70 |
C52.11(C2xC4) = C104.1C4 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 208 | 4 | C52.11(C2xC4) | 416,71 |
C52.12(C2xC4) = C2xC52.C4 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 208 | | C52.12(C2xC4) | 416,200 |
C52.13(C2xC4) = D13:C16 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 208 | 4 | C52.13(C2xC4) | 416,64 |
C52.14(C2xC4) = D26.C8 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 208 | 4 | C52.14(C2xC4) | 416,65 |
C52.15(C2xC4) = C8xC13:C4 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 104 | 4 | C52.15(C2xC4) | 416,66 |
C52.16(C2xC4) = C104:C4 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 104 | 4 | C52.16(C2xC4) | 416,67 |
C52.17(C2xC4) = C2xC13:C16 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 416 | | C52.17(C2xC4) | 416,72 |
C52.18(C2xC4) = C52.C8 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 208 | 4 | C52.18(C2xC4) | 416,73 |
C52.19(C2xC4) = C2xD13:C8 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 208 | | C52.19(C2xC4) | 416,199 |
C52.20(C2xC4) = D13:M4(2) | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 104 | 4 | C52.20(C2xC4) | 416,201 |
C52.21(C2xC4) = D26.C23 | φ: C2xC4/C2 → C4 ⊆ Aut C52 | 104 | 4 | C52.21(C2xC4) | 416,204 |
C52.22(C2xC4) = C26.D8 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 416 | | C52.22(C2xC4) | 416,14 |
C52.23(C2xC4) = C52.Q8 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 416 | | C52.23(C2xC4) | 416,15 |
C52.24(C2xC4) = D52:6C4 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 208 | | C52.24(C2xC4) | 416,16 |
C52.25(C2xC4) = C26.Q16 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 416 | | C52.25(C2xC4) | 416,17 |
C52.26(C2xC4) = C52.53D4 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 208 | 4 | C52.26(C2xC4) | 416,29 |
C52.27(C2xC4) = D52:7C4 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 104 | 4 | C52.27(C2xC4) | 416,32 |
C52.28(C2xC4) = D4:Dic13 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 208 | | C52.28(C2xC4) | 416,39 |
C52.29(C2xC4) = Q8:Dic13 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 416 | | C52.29(C2xC4) | 416,42 |
C52.30(C2xC4) = C52.56D4 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 104 | 4 | C52.30(C2xC4) | 416,44 |
C52.31(C2xC4) = Dic13:3Q8 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 416 | | C52.31(C2xC4) | 416,108 |
C52.32(C2xC4) = C4:C4:7D13 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 208 | | C52.32(C2xC4) | 416,113 |
C52.33(C2xC4) = M4(2)xD13 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 104 | 4 | C52.33(C2xC4) | 416,127 |
C52.34(C2xC4) = D52.2C4 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 208 | 4 | C52.34(C2xC4) | 416,128 |
C52.35(C2xC4) = Q8xDic13 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 416 | | C52.35(C2xC4) | 416,166 |
C52.36(C2xC4) = D4.Dic13 | φ: C2xC4/C2 → C22 ⊆ Aut C52 | 208 | 4 | C52.36(C2xC4) | 416,169 |
C52.37(C2xC4) = D52:4C4 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 104 | 2 | C52.37(C2xC4) | 416,12 |
C52.38(C2xC4) = C52.44D4 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 416 | | C52.38(C2xC4) | 416,23 |
C52.39(C2xC4) = D52:5C4 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | | C52.39(C2xC4) | 416,28 |
C52.40(C2xC4) = C4xDic26 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 416 | | C52.40(C2xC4) | 416,89 |
C52.41(C2xC4) = D52.3C4 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | 2 | C52.41(C2xC4) | 416,122 |
C52.42(C2xC4) = C16xD13 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | 2 | C52.42(C2xC4) | 416,4 |
C52.43(C2xC4) = C208:C2 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | 2 | C52.43(C2xC4) | 416,5 |
C52.44(C2xC4) = C4xC13:2C8 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 416 | | C52.44(C2xC4) | 416,9 |
C52.45(C2xC4) = C26.7C42 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 416 | | C52.45(C2xC4) | 416,10 |
C52.46(C2xC4) = C42:D13 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | | C52.46(C2xC4) | 416,93 |
C52.47(C2xC4) = C2xC8xD13 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | | C52.47(C2xC4) | 416,120 |
C52.48(C2xC4) = C2xC8:D13 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | | C52.48(C2xC4) | 416,121 |
C52.49(C2xC4) = C13xD4:C4 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | | C52.49(C2xC4) | 416,52 |
C52.50(C2xC4) = C13xQ8:C4 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 416 | | C52.50(C2xC4) | 416,53 |
C52.51(C2xC4) = C13xC4wrC2 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 104 | 2 | C52.51(C2xC4) | 416,54 |
C52.52(C2xC4) = Q8xC52 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 416 | | C52.52(C2xC4) | 416,180 |
C52.53(C2xC4) = C13xC8oD4 | φ: C2xC4/C4 → C2 ⊆ Aut C52 | 208 | 2 | C52.53(C2xC4) | 416,192 |
C52.54(C2xC4) = C104:6C4 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.54(C2xC4) | 416,24 |
C52.55(C2xC4) = C104:5C4 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.55(C2xC4) | 416,25 |
C52.56(C2xC4) = C104.6C4 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 208 | 2 | C52.56(C2xC4) | 416,26 |
C52.57(C2xC4) = C2xC52.4C4 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 208 | | C52.57(C2xC4) | 416,142 |
C52.58(C2xC4) = C23.21D26 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 208 | | C52.58(C2xC4) | 416,147 |
C52.59(C2xC4) = C2xC13:2C16 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.59(C2xC4) | 416,18 |
C52.60(C2xC4) = C52.4C8 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 208 | 2 | C52.60(C2xC4) | 416,19 |
C52.61(C2xC4) = C8xDic13 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.61(C2xC4) | 416,20 |
C52.62(C2xC4) = C104:8C4 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.62(C2xC4) | 416,22 |
C52.63(C2xC4) = C22xC13:2C8 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.63(C2xC4) | 416,141 |
C52.64(C2xC4) = C13xC4.Q8 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.64(C2xC4) | 416,56 |
C52.65(C2xC4) = C13xC2.D8 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 416 | | C52.65(C2xC4) | 416,57 |
C52.66(C2xC4) = C13xC8.C4 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 208 | 2 | C52.66(C2xC4) | 416,58 |
C52.67(C2xC4) = C13xC42:C2 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 208 | | C52.67(C2xC4) | 416,178 |
C52.68(C2xC4) = M4(2)xC26 | φ: C2xC4/C22 → C2 ⊆ Aut C52 | 208 | | C52.68(C2xC4) | 416,191 |
C52.69(C2xC4) = C13xC8:C4 | central extension (φ=1) | 416 | | C52.69(C2xC4) | 416,47 |
C52.70(C2xC4) = C13xM5(2) | central extension (φ=1) | 208 | 2 | C52.70(C2xC4) | 416,60 |