Extensions 1→N→G→Q→1 with N=C26 and Q=M4(2)

Direct product G=N×Q with N=C26 and Q=M4(2)
dρLabelID
M4(2)×C26208M4(2)xC26416,191

Semidirect products G=N:Q with N=C26 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C261M4(2) = C2×C52.C4φ: M4(2)/C4C4 ⊆ Aut C26208C26:1M4(2)416,200
C262M4(2) = C2×C13⋊M4(2)φ: M4(2)/C22C4 ⊆ Aut C26208C26:2M4(2)416,210
C263M4(2) = C2×C8⋊D13φ: M4(2)/C8C2 ⊆ Aut C26208C26:3M4(2)416,121
C264M4(2) = C2×C52.4C4φ: M4(2)/C2×C4C2 ⊆ Aut C26208C26:4M4(2)416,142

Non-split extensions G=N.Q with N=C26 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C26.1M4(2) = C52⋊C8φ: M4(2)/C4C4 ⊆ Aut C26416C26.1M4(2)416,76
C26.2M4(2) = C26.C42φ: M4(2)/C4C4 ⊆ Aut C26416C26.2M4(2)416,77
C26.3M4(2) = D26⋊C8φ: M4(2)/C4C4 ⊆ Aut C26208C26.3M4(2)416,78
C26.4M4(2) = Dic13⋊C8φ: M4(2)/C22C4 ⊆ Aut C26416C26.4M4(2)416,79
C26.5M4(2) = C26.M4(2)φ: M4(2)/C22C4 ⊆ Aut C26208C26.5M4(2)416,87
C26.6M4(2) = C52.8Q8φ: M4(2)/C8C2 ⊆ Aut C26416C26.6M4(2)416,21
C26.7M4(2) = C1048C4φ: M4(2)/C8C2 ⊆ Aut C26416C26.7M4(2)416,22
C26.8M4(2) = D261C8φ: M4(2)/C8C2 ⊆ Aut C26208C26.8M4(2)416,27
C26.9M4(2) = C26.7C42φ: M4(2)/C2×C4C2 ⊆ Aut C26416C26.9M4(2)416,10
C26.10M4(2) = C523C8φ: M4(2)/C2×C4C2 ⊆ Aut C26416C26.10M4(2)416,11
C26.11M4(2) = C52.55D4φ: M4(2)/C2×C4C2 ⊆ Aut C26208C26.11M4(2)416,37
C26.12M4(2) = C13×C8⋊C4central extension (φ=1)416C26.12M4(2)416,47
C26.13M4(2) = C13×C22⋊C8central extension (φ=1)208C26.13M4(2)416,48
C26.14M4(2) = C13×C4⋊C8central extension (φ=1)416C26.14M4(2)416,55

׿
×
𝔽