Extensions 1→N→G→Q→1 with N=C2×C36 and Q=S3

Direct product G=N×Q with N=C2×C36 and Q=S3
dρLabelID
S3×C2×C36144S3xC2xC36432,345

Semidirect products G=N:Q with N=C2×C36 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C36)⋊1S3 = C9×D6⋊C4φ: S3/C3C2 ⊆ Aut C2×C36144(C2xC36):1S3432,135
(C2×C36)⋊2S3 = C6.11D36φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36):2S3432,183
(C2×C36)⋊3S3 = C2×C36⋊S3φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36):3S3432,382
(C2×C36)⋊4S3 = C36.70D6φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36):4S3432,383
(C2×C36)⋊5S3 = C2×C4×C9⋊S3φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36):5S3432,381
(C2×C36)⋊6S3 = C18×D12φ: S3/C3C2 ⊆ Aut C2×C36144(C2xC36):6S3432,346
(C2×C36)⋊7S3 = C9×C4○D12φ: S3/C3C2 ⊆ Aut C2×C36722(C2xC36):7S3432,347

Non-split extensions G=N.Q with N=C2×C36 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C36).1S3 = Dic27⋊C4φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).1S3432,12
(C2×C36).2S3 = D54⋊C4φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36).2S3432,14
(C2×C36).3S3 = C9×Dic3⋊C4φ: S3/C3C2 ⊆ Aut C2×C36144(C2xC36).3S3432,132
(C2×C36).4S3 = C6.Dic18φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).4S3432,181
(C2×C36).5S3 = C4⋊Dic27φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).5S3432,13
(C2×C36).6S3 = C2×Dic54φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).6S3432,43
(C2×C36).7S3 = C2×D108φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36).7S3432,45
(C2×C36).8S3 = C36⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).8S3432,182
(C2×C36).9S3 = C2×C12.D9φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).9S3432,380
(C2×C36).10S3 = C4.Dic27φ: S3/C3C2 ⊆ Aut C2×C362162(C2xC36).10S3432,10
(C2×C36).11S3 = D1085C2φ: S3/C3C2 ⊆ Aut C2×C362162(C2xC36).11S3432,46
(C2×C36).12S3 = C36.69D6φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36).12S3432,179
(C2×C36).13S3 = C2×C27⋊C8φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).13S3432,9
(C2×C36).14S3 = C4×Dic27φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).14S3432,11
(C2×C36).15S3 = C2×C4×D27φ: S3/C3C2 ⊆ Aut C2×C36216(C2xC36).15S3432,44
(C2×C36).16S3 = C2×C36.S3φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).16S3432,178
(C2×C36).17S3 = C4×C9⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C36432(C2xC36).17S3432,180
(C2×C36).18S3 = C9×C4.Dic3φ: S3/C3C2 ⊆ Aut C2×C36722(C2xC36).18S3432,127
(C2×C36).19S3 = C9×C4⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C36144(C2xC36).19S3432,133
(C2×C36).20S3 = C18×Dic6φ: S3/C3C2 ⊆ Aut C2×C36144(C2xC36).20S3432,341
(C2×C36).21S3 = C18×C3⋊C8central extension (φ=1)144(C2xC36).21S3432,126
(C2×C36).22S3 = Dic3×C36central extension (φ=1)144(C2xC36).22S3432,131

׿
×
𝔽