extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C36).1S3 = Dic27⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).1S3 | 432,12 |
(C2×C36).2S3 = D54⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 216 | | (C2xC36).2S3 | 432,14 |
(C2×C36).3S3 = C9×Dic3⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 144 | | (C2xC36).3S3 | 432,132 |
(C2×C36).4S3 = C6.Dic18 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).4S3 | 432,181 |
(C2×C36).5S3 = C4⋊Dic27 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).5S3 | 432,13 |
(C2×C36).6S3 = C2×Dic54 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).6S3 | 432,43 |
(C2×C36).7S3 = C2×D108 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 216 | | (C2xC36).7S3 | 432,45 |
(C2×C36).8S3 = C36⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).8S3 | 432,182 |
(C2×C36).9S3 = C2×C12.D9 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).9S3 | 432,380 |
(C2×C36).10S3 = C4.Dic27 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 216 | 2 | (C2xC36).10S3 | 432,10 |
(C2×C36).11S3 = D108⋊5C2 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 216 | 2 | (C2xC36).11S3 | 432,46 |
(C2×C36).12S3 = C36.69D6 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 216 | | (C2xC36).12S3 | 432,179 |
(C2×C36).13S3 = C2×C27⋊C8 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).13S3 | 432,9 |
(C2×C36).14S3 = C4×Dic27 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).14S3 | 432,11 |
(C2×C36).15S3 = C2×C4×D27 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 216 | | (C2xC36).15S3 | 432,44 |
(C2×C36).16S3 = C2×C36.S3 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).16S3 | 432,178 |
(C2×C36).17S3 = C4×C9⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 432 | | (C2xC36).17S3 | 432,180 |
(C2×C36).18S3 = C9×C4.Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 72 | 2 | (C2xC36).18S3 | 432,127 |
(C2×C36).19S3 = C9×C4⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 144 | | (C2xC36).19S3 | 432,133 |
(C2×C36).20S3 = C18×Dic6 | φ: S3/C3 → C2 ⊆ Aut C2×C36 | 144 | | (C2xC36).20S3 | 432,341 |
(C2×C36).21S3 = C18×C3⋊C8 | central extension (φ=1) | 144 | | (C2xC36).21S3 | 432,126 |
(C2×C36).22S3 = Dic3×C36 | central extension (φ=1) | 144 | | (C2xC36).22S3 | 432,131 |