Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C2×C18

Direct product G=N×Q with N=C2 and Q=S3×C2×C18
dρLabelID
S3×C22×C18144S3xC2^2xC18432,557


Non-split extensions G=N.Q with N=C2 and Q=S3×C2×C18
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C2×C18) = S3×C2×C36central extension (φ=1)144C2.1(S3xC2xC18)432,345
C2.2(S3×C2×C18) = Dic3×C2×C18central extension (φ=1)144C2.2(S3xC2xC18)432,373
C2.3(S3×C2×C18) = C18×Dic6central stem extension (φ=1)144C2.3(S3xC2xC18)432,341
C2.4(S3×C2×C18) = C18×D12central stem extension (φ=1)144C2.4(S3xC2xC18)432,346
C2.5(S3×C2×C18) = C9×C4○D12central stem extension (φ=1)722C2.5(S3xC2xC18)432,347
C2.6(S3×C2×C18) = S3×D4×C9central stem extension (φ=1)724C2.6(S3xC2xC18)432,358
C2.7(S3×C2×C18) = C9×D42S3central stem extension (φ=1)724C2.7(S3xC2xC18)432,359
C2.8(S3×C2×C18) = S3×Q8×C9central stem extension (φ=1)1444C2.8(S3xC2xC18)432,366
C2.9(S3×C2×C18) = C9×Q83S3central stem extension (φ=1)1444C2.9(S3xC2xC18)432,367
C2.10(S3×C2×C18) = C18×C3⋊D4central stem extension (φ=1)72C2.10(S3xC2xC18)432,375

׿
×
𝔽