Extensions 1→N→G→Q→1 with N=C3×D4 and Q=D9

Direct product G=N×Q with N=C3×D4 and Q=D9
dρLabelID
C3×D4×D9724C3xD4xD9432,356

Semidirect products G=N:Q with N=C3×D4 and Q=D9
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1D9 = C36.18D6φ: D9/C9C2 ⊆ Out C3×D4216(C3xD4):1D9432,191
(C3×D4)⋊2D9 = D4×C9⋊S3φ: D9/C9C2 ⊆ Out C3×D4108(C3xD4):2D9432,388
(C3×D4)⋊3D9 = C36.27D6φ: D9/C9C2 ⊆ Out C3×D4216(C3xD4):3D9432,389
(C3×D4)⋊4D9 = C3×D4⋊D9φ: D9/C9C2 ⊆ Out C3×D4724(C3xD4):4D9432,149
(C3×D4)⋊5D9 = C3×D42D9φ: trivial image724(C3xD4):5D9432,357

Non-split extensions G=N.Q with N=C3×D4 and Q=D9
extensionφ:Q→Out NdρLabelID
(C3×D4).1D9 = D4.D27φ: D9/C9C2 ⊆ Out C3×D42164-(C3xD4).1D9432,15
(C3×D4).2D9 = D4⋊D27φ: D9/C9C2 ⊆ Out C3×D42164+(C3xD4).2D9432,16
(C3×D4).3D9 = D4×D27φ: D9/C9C2 ⊆ Out C3×D41084+(C3xD4).3D9432,47
(C3×D4).4D9 = D42D27φ: D9/C9C2 ⊆ Out C3×D42164-(C3xD4).4D9432,48
(C3×D4).5D9 = C36.17D6φ: D9/C9C2 ⊆ Out C3×D4216(C3xD4).5D9432,190
(C3×D4).6D9 = C3×D4.D9φ: D9/C9C2 ⊆ Out C3×D4724(C3xD4).6D9432,148

׿
×
𝔽