extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C3⋊Dic3) = C62⋊6Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C2×C6 | 36 | 3 | (C2xC6).1(C3:Dic3) | 432,260 |
(C2×C6).2(C3⋊Dic3) = A4⋊Dic9 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C2×C6 | 108 | 6- | (C2xC6).2(C3:Dic3) | 432,254 |
(C2×C6).3(C3⋊Dic3) = C62.10Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C2×C6 | 108 | | (C2xC6).3(C3:Dic3) | 432,259 |
(C2×C6).4(C3⋊Dic3) = He3⋊8M4(2) | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6).4(C3:Dic3) | 432,185 |
(C2×C6).5(C3⋊Dic3) = C62⋊4Dic3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).5(C3:Dic3) | 432,199 |
(C2×C6).6(C3⋊Dic3) = C3×C12.58D6 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).6(C3:Dic3) | 432,486 |
(C2×C6).7(C3⋊Dic3) = C2×C36.S3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).7(C3:Dic3) | 432,178 |
(C2×C6).8(C3⋊Dic3) = C36.69D6 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).8(C3:Dic3) | 432,179 |
(C2×C6).9(C3⋊Dic3) = C62.127D6 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).9(C3:Dic3) | 432,198 |
(C2×C6).10(C3⋊Dic3) = C22×C9⋊Dic3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).10(C3:Dic3) | 432,396 |
(C2×C6).11(C3⋊Dic3) = C2×C33⋊7C8 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 432 | | (C2xC6).11(C3:Dic3) | 432,501 |
(C2×C6).12(C3⋊Dic3) = C33⋊18M4(2) | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 216 | | (C2xC6).12(C3:Dic3) | 432,502 |
(C2×C6).13(C3⋊Dic3) = C2×He3⋊4C8 | central extension (φ=1) | 144 | | (C2xC6).13(C3:Dic3) | 432,184 |
(C2×C6).14(C3⋊Dic3) = C22×He3⋊3C4 | central extension (φ=1) | 144 | | (C2xC6).14(C3:Dic3) | 432,398 |
(C2×C6).15(C3⋊Dic3) = C6×C32⋊4C8 | central extension (φ=1) | 144 | | (C2xC6).15(C3:Dic3) | 432,485 |