# Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C3⋊Dic3

Direct product G=N×Q with N=C2×C6 and Q=C3⋊Dic3
dρLabelID
C2×C6×C3⋊Dic3144C2xC6xC3:Dic3432,718

Semidirect products G=N:Q with N=C2×C6 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1(C3⋊Dic3) = C3×C6.7S4φ: C3⋊Dic3/C6S3 ⊆ Aut C2×C6366(C2xC6):1(C3:Dic3)432,618
(C2×C6)⋊2(C3⋊Dic3) = C6210Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C2×C6108(C2xC6):2(C3:Dic3)432,621
(C2×C6)⋊3(C3⋊Dic3) = C3×C625C4φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6):3(C3:Dic3)432,495
(C2×C6)⋊4(C3⋊Dic3) = C63.C2φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6216(C2xC6):4(C3:Dic3)432,511
(C2×C6)⋊5(C3⋊Dic3) = C22×C335C4φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6432(C2xC6):5(C3:Dic3)432,728

Non-split extensions G=N.Q with N=C2×C6 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6).1(C3⋊Dic3) = C626Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C2×C6363(C2xC6).1(C3:Dic3)432,260
(C2×C6).2(C3⋊Dic3) = A4⋊Dic9φ: C3⋊Dic3/C6S3 ⊆ Aut C2×C61086-(C2xC6).2(C3:Dic3)432,254
(C2×C6).3(C3⋊Dic3) = C62.10Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C2×C6108(C2xC6).3(C3:Dic3)432,259
(C2×C6).4(C3⋊Dic3) = He38M4(2)φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6726(C2xC6).4(C3:Dic3)432,185
(C2×C6).5(C3⋊Dic3) = C624Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).5(C3:Dic3)432,199
(C2×C6).6(C3⋊Dic3) = C3×C12.58D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).6(C3:Dic3)432,486
(C2×C6).7(C3⋊Dic3) = C2×C36.S3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6432(C2xC6).7(C3:Dic3)432,178
(C2×C6).8(C3⋊Dic3) = C36.69D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6216(C2xC6).8(C3:Dic3)432,179
(C2×C6).9(C3⋊Dic3) = C62.127D6φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6216(C2xC6).9(C3:Dic3)432,198
(C2×C6).10(C3⋊Dic3) = C22×C9⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6432(C2xC6).10(C3:Dic3)432,396
(C2×C6).11(C3⋊Dic3) = C2×C337C8φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6432(C2xC6).11(C3:Dic3)432,501
(C2×C6).12(C3⋊Dic3) = C3318M4(2)φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C2×C6216(C2xC6).12(C3:Dic3)432,502
(C2×C6).13(C3⋊Dic3) = C2×He34C8central extension (φ=1)144(C2xC6).13(C3:Dic3)432,184
(C2×C6).14(C3⋊Dic3) = C22×He33C4central extension (φ=1)144(C2xC6).14(C3:Dic3)432,398
(C2×C6).15(C3⋊Dic3) = C6×C324C8central extension (φ=1)144(C2xC6).15(C3:Dic3)432,485

׿
×
𝔽