Copied to
clipboard

G = C2×C6×C3⋊Dic3order 432 = 24·33

Direct product of C2×C6 and C3⋊Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×C6×C3⋊Dic3, C63.6C2, C6217C12, C6216Dic3, C62.156D6, C62(C6×Dic3), (C3×C62)⋊10C4, (C2×C62).31S3, (C2×C62).30C6, C62.79(C2×C6), C3320(C22×C4), C3211(C22×C12), (C32×C6).93C23, (C3×C62).65C22, C3210(C22×Dic3), C6.60(S3×C2×C6), C32(Dic3×C2×C6), (C3×C6)⋊10(C2×C12), (C2×C6).79(S3×C6), (C3×C6)⋊9(C2×Dic3), (C2×C6)⋊7(C3×Dic3), C23.4(C3×C3⋊S3), (C32×C6)⋊14(C2×C4), C6.60(C22×C3⋊S3), C22.11(C6×C3⋊S3), (C22×C6).37(C3×S3), (C3×C6).67(C22×C6), (C22×C6).20(C3⋊S3), (C3×C6).182(C22×S3), C2.2(C2×C6×C3⋊S3), (C2×C6).70(C2×C3⋊S3), SmallGroup(432,718)

Series: Derived Chief Lower central Upper central

C1C32 — C2×C6×C3⋊Dic3
C1C3C32C3×C6C32×C6C3×C3⋊Dic3C6×C3⋊Dic3 — C2×C6×C3⋊Dic3
C32 — C2×C6×C3⋊Dic3
C1C22×C6

Generators and relations for C2×C6×C3⋊Dic3
 G = < a,b,c,d,e | a2=b6=c3=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 932 in 452 conjugacy classes, 214 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C23, C32, C32, C32, Dic3, C12, C2×C6, C2×C6, C22×C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C22×C6, C22×C6, C33, C3×Dic3, C3⋊Dic3, C62, C62, C22×Dic3, C22×C12, C32×C6, C32×C6, C6×Dic3, C2×C3⋊Dic3, C2×C62, C2×C62, C2×C62, C3×C3⋊Dic3, C3×C62, Dic3×C2×C6, C22×C3⋊Dic3, C6×C3⋊Dic3, C63, C2×C6×C3⋊Dic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C23, Dic3, C12, D6, C2×C6, C22×C4, C3×S3, C3⋊S3, C2×Dic3, C2×C12, C22×S3, C22×C6, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C22×Dic3, C22×C12, C3×C3⋊S3, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C22×C3⋊S3, C3×C3⋊Dic3, C6×C3⋊S3, Dic3×C2×C6, C22×C3⋊Dic3, C6×C3⋊Dic3, C2×C6×C3⋊S3, C2×C6×C3⋊Dic3

Smallest permutation representation of C2×C6×C3⋊Dic3
On 144 points
Generators in S144
(1 66)(2 61)(3 62)(4 63)(5 64)(6 65)(7 125)(8 126)(9 121)(10 122)(11 123)(12 124)(13 41)(14 42)(15 37)(16 38)(17 39)(18 40)(19 70)(20 71)(21 72)(22 67)(23 68)(24 69)(25 132)(26 127)(27 128)(28 129)(29 130)(30 131)(31 116)(32 117)(33 118)(34 119)(35 120)(36 115)(43 82)(44 83)(45 84)(46 79)(47 80)(48 81)(49 88)(50 89)(51 90)(52 85)(53 86)(54 87)(55 94)(56 95)(57 96)(58 91)(59 92)(60 93)(73 112)(74 113)(75 114)(76 109)(77 110)(78 111)(97 136)(98 137)(99 138)(100 133)(101 134)(102 135)(103 142)(104 143)(105 144)(106 139)(107 140)(108 141)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 57 44)(2 58 45)(3 59 46)(4 60 47)(5 55 48)(6 56 43)(7 144 110)(8 139 111)(9 140 112)(10 141 113)(11 142 114)(12 143 109)(13 24 50)(14 19 51)(15 20 52)(16 21 53)(17 22 54)(18 23 49)(25 135 34)(26 136 35)(27 137 36)(28 138 31)(29 133 32)(30 134 33)(37 71 85)(38 72 86)(39 67 87)(40 68 88)(41 69 89)(42 70 90)(61 91 84)(62 92 79)(63 93 80)(64 94 81)(65 95 82)(66 96 83)(73 121 107)(74 122 108)(75 123 103)(76 124 104)(77 125 105)(78 126 106)(97 120 127)(98 115 128)(99 116 129)(100 117 130)(101 118 131)(102 119 132)
(1 13 46 52 55 22)(2 14 47 53 56 23)(3 15 48 54 57 24)(4 16 43 49 58 19)(5 17 44 50 59 20)(6 18 45 51 60 21)(7 34 114 133 140 27)(8 35 109 134 141 28)(9 36 110 135 142 29)(10 31 111 136 143 30)(11 32 112 137 144 25)(12 33 113 138 139 26)(37 81 87 96 69 62)(38 82 88 91 70 63)(39 83 89 92 71 64)(40 84 90 93 72 65)(41 79 85 94 67 66)(42 80 86 95 68 61)(73 98 105 132 123 117)(74 99 106 127 124 118)(75 100 107 128 125 119)(76 101 108 129 126 120)(77 102 103 130 121 115)(78 97 104 131 122 116)
(1 124 52 99)(2 125 53 100)(3 126 54 101)(4 121 49 102)(5 122 50 97)(6 123 51 98)(7 86 133 61)(8 87 134 62)(9 88 135 63)(10 89 136 64)(11 90 137 65)(12 85 138 66)(13 127 55 74)(14 128 56 75)(15 129 57 76)(16 130 58 77)(17 131 59 78)(18 132 60 73)(19 115 43 103)(20 116 44 104)(21 117 45 105)(22 118 46 106)(23 119 47 107)(24 120 48 108)(25 93 112 40)(26 94 113 41)(27 95 114 42)(28 96 109 37)(29 91 110 38)(30 92 111 39)(31 83 143 71)(32 84 144 72)(33 79 139 67)(34 80 140 68)(35 81 141 69)(36 82 142 70)

G:=sub<Sym(144)| (1,66)(2,61)(3,62)(4,63)(5,64)(6,65)(7,125)(8,126)(9,121)(10,122)(11,123)(12,124)(13,41)(14,42)(15,37)(16,38)(17,39)(18,40)(19,70)(20,71)(21,72)(22,67)(23,68)(24,69)(25,132)(26,127)(27,128)(28,129)(29,130)(30,131)(31,116)(32,117)(33,118)(34,119)(35,120)(36,115)(43,82)(44,83)(45,84)(46,79)(47,80)(48,81)(49,88)(50,89)(51,90)(52,85)(53,86)(54,87)(55,94)(56,95)(57,96)(58,91)(59,92)(60,93)(73,112)(74,113)(75,114)(76,109)(77,110)(78,111)(97,136)(98,137)(99,138)(100,133)(101,134)(102,135)(103,142)(104,143)(105,144)(106,139)(107,140)(108,141), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,57,44)(2,58,45)(3,59,46)(4,60,47)(5,55,48)(6,56,43)(7,144,110)(8,139,111)(9,140,112)(10,141,113)(11,142,114)(12,143,109)(13,24,50)(14,19,51)(15,20,52)(16,21,53)(17,22,54)(18,23,49)(25,135,34)(26,136,35)(27,137,36)(28,138,31)(29,133,32)(30,134,33)(37,71,85)(38,72,86)(39,67,87)(40,68,88)(41,69,89)(42,70,90)(61,91,84)(62,92,79)(63,93,80)(64,94,81)(65,95,82)(66,96,83)(73,121,107)(74,122,108)(75,123,103)(76,124,104)(77,125,105)(78,126,106)(97,120,127)(98,115,128)(99,116,129)(100,117,130)(101,118,131)(102,119,132), (1,13,46,52,55,22)(2,14,47,53,56,23)(3,15,48,54,57,24)(4,16,43,49,58,19)(5,17,44,50,59,20)(6,18,45,51,60,21)(7,34,114,133,140,27)(8,35,109,134,141,28)(9,36,110,135,142,29)(10,31,111,136,143,30)(11,32,112,137,144,25)(12,33,113,138,139,26)(37,81,87,96,69,62)(38,82,88,91,70,63)(39,83,89,92,71,64)(40,84,90,93,72,65)(41,79,85,94,67,66)(42,80,86,95,68,61)(73,98,105,132,123,117)(74,99,106,127,124,118)(75,100,107,128,125,119)(76,101,108,129,126,120)(77,102,103,130,121,115)(78,97,104,131,122,116), (1,124,52,99)(2,125,53,100)(3,126,54,101)(4,121,49,102)(5,122,50,97)(6,123,51,98)(7,86,133,61)(8,87,134,62)(9,88,135,63)(10,89,136,64)(11,90,137,65)(12,85,138,66)(13,127,55,74)(14,128,56,75)(15,129,57,76)(16,130,58,77)(17,131,59,78)(18,132,60,73)(19,115,43,103)(20,116,44,104)(21,117,45,105)(22,118,46,106)(23,119,47,107)(24,120,48,108)(25,93,112,40)(26,94,113,41)(27,95,114,42)(28,96,109,37)(29,91,110,38)(30,92,111,39)(31,83,143,71)(32,84,144,72)(33,79,139,67)(34,80,140,68)(35,81,141,69)(36,82,142,70)>;

G:=Group( (1,66)(2,61)(3,62)(4,63)(5,64)(6,65)(7,125)(8,126)(9,121)(10,122)(11,123)(12,124)(13,41)(14,42)(15,37)(16,38)(17,39)(18,40)(19,70)(20,71)(21,72)(22,67)(23,68)(24,69)(25,132)(26,127)(27,128)(28,129)(29,130)(30,131)(31,116)(32,117)(33,118)(34,119)(35,120)(36,115)(43,82)(44,83)(45,84)(46,79)(47,80)(48,81)(49,88)(50,89)(51,90)(52,85)(53,86)(54,87)(55,94)(56,95)(57,96)(58,91)(59,92)(60,93)(73,112)(74,113)(75,114)(76,109)(77,110)(78,111)(97,136)(98,137)(99,138)(100,133)(101,134)(102,135)(103,142)(104,143)(105,144)(106,139)(107,140)(108,141), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,57,44)(2,58,45)(3,59,46)(4,60,47)(5,55,48)(6,56,43)(7,144,110)(8,139,111)(9,140,112)(10,141,113)(11,142,114)(12,143,109)(13,24,50)(14,19,51)(15,20,52)(16,21,53)(17,22,54)(18,23,49)(25,135,34)(26,136,35)(27,137,36)(28,138,31)(29,133,32)(30,134,33)(37,71,85)(38,72,86)(39,67,87)(40,68,88)(41,69,89)(42,70,90)(61,91,84)(62,92,79)(63,93,80)(64,94,81)(65,95,82)(66,96,83)(73,121,107)(74,122,108)(75,123,103)(76,124,104)(77,125,105)(78,126,106)(97,120,127)(98,115,128)(99,116,129)(100,117,130)(101,118,131)(102,119,132), (1,13,46,52,55,22)(2,14,47,53,56,23)(3,15,48,54,57,24)(4,16,43,49,58,19)(5,17,44,50,59,20)(6,18,45,51,60,21)(7,34,114,133,140,27)(8,35,109,134,141,28)(9,36,110,135,142,29)(10,31,111,136,143,30)(11,32,112,137,144,25)(12,33,113,138,139,26)(37,81,87,96,69,62)(38,82,88,91,70,63)(39,83,89,92,71,64)(40,84,90,93,72,65)(41,79,85,94,67,66)(42,80,86,95,68,61)(73,98,105,132,123,117)(74,99,106,127,124,118)(75,100,107,128,125,119)(76,101,108,129,126,120)(77,102,103,130,121,115)(78,97,104,131,122,116), (1,124,52,99)(2,125,53,100)(3,126,54,101)(4,121,49,102)(5,122,50,97)(6,123,51,98)(7,86,133,61)(8,87,134,62)(9,88,135,63)(10,89,136,64)(11,90,137,65)(12,85,138,66)(13,127,55,74)(14,128,56,75)(15,129,57,76)(16,130,58,77)(17,131,59,78)(18,132,60,73)(19,115,43,103)(20,116,44,104)(21,117,45,105)(22,118,46,106)(23,119,47,107)(24,120,48,108)(25,93,112,40)(26,94,113,41)(27,95,114,42)(28,96,109,37)(29,91,110,38)(30,92,111,39)(31,83,143,71)(32,84,144,72)(33,79,139,67)(34,80,140,68)(35,81,141,69)(36,82,142,70) );

G=PermutationGroup([[(1,66),(2,61),(3,62),(4,63),(5,64),(6,65),(7,125),(8,126),(9,121),(10,122),(11,123),(12,124),(13,41),(14,42),(15,37),(16,38),(17,39),(18,40),(19,70),(20,71),(21,72),(22,67),(23,68),(24,69),(25,132),(26,127),(27,128),(28,129),(29,130),(30,131),(31,116),(32,117),(33,118),(34,119),(35,120),(36,115),(43,82),(44,83),(45,84),(46,79),(47,80),(48,81),(49,88),(50,89),(51,90),(52,85),(53,86),(54,87),(55,94),(56,95),(57,96),(58,91),(59,92),(60,93),(73,112),(74,113),(75,114),(76,109),(77,110),(78,111),(97,136),(98,137),(99,138),(100,133),(101,134),(102,135),(103,142),(104,143),(105,144),(106,139),(107,140),(108,141)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,57,44),(2,58,45),(3,59,46),(4,60,47),(5,55,48),(6,56,43),(7,144,110),(8,139,111),(9,140,112),(10,141,113),(11,142,114),(12,143,109),(13,24,50),(14,19,51),(15,20,52),(16,21,53),(17,22,54),(18,23,49),(25,135,34),(26,136,35),(27,137,36),(28,138,31),(29,133,32),(30,134,33),(37,71,85),(38,72,86),(39,67,87),(40,68,88),(41,69,89),(42,70,90),(61,91,84),(62,92,79),(63,93,80),(64,94,81),(65,95,82),(66,96,83),(73,121,107),(74,122,108),(75,123,103),(76,124,104),(77,125,105),(78,126,106),(97,120,127),(98,115,128),(99,116,129),(100,117,130),(101,118,131),(102,119,132)], [(1,13,46,52,55,22),(2,14,47,53,56,23),(3,15,48,54,57,24),(4,16,43,49,58,19),(5,17,44,50,59,20),(6,18,45,51,60,21),(7,34,114,133,140,27),(8,35,109,134,141,28),(9,36,110,135,142,29),(10,31,111,136,143,30),(11,32,112,137,144,25),(12,33,113,138,139,26),(37,81,87,96,69,62),(38,82,88,91,70,63),(39,83,89,92,71,64),(40,84,90,93,72,65),(41,79,85,94,67,66),(42,80,86,95,68,61),(73,98,105,132,123,117),(74,99,106,127,124,118),(75,100,107,128,125,119),(76,101,108,129,126,120),(77,102,103,130,121,115),(78,97,104,131,122,116)], [(1,124,52,99),(2,125,53,100),(3,126,54,101),(4,121,49,102),(5,122,50,97),(6,123,51,98),(7,86,133,61),(8,87,134,62),(9,88,135,63),(10,89,136,64),(11,90,137,65),(12,85,138,66),(13,127,55,74),(14,128,56,75),(15,129,57,76),(16,130,58,77),(17,131,59,78),(18,132,60,73),(19,115,43,103),(20,116,44,104),(21,117,45,105),(22,118,46,106),(23,119,47,107),(24,120,48,108),(25,93,112,40),(26,94,113,41),(27,95,114,42),(28,96,109,37),(29,91,110,38),(30,92,111,39),(31,83,143,71),(32,84,144,72),(33,79,139,67),(34,80,140,68),(35,81,141,69),(36,82,142,70)]])

144 conjugacy classes

class 1 2A···2G3A3B3C···3N4A···4H6A···6N6O···6CT12A···12P
order12···2333···34···46···66···612···12
size11···1112···29···91···12···29···9

144 irreducible representations

dim11111111222222
type++++-+
imageC1C2C2C3C4C6C6C12S3Dic3D6C3×S3C3×Dic3S3×C6
kernelC2×C6×C3⋊Dic3C6×C3⋊Dic3C63C22×C3⋊Dic3C3×C62C2×C3⋊Dic3C2×C62C62C2×C62C62C62C22×C6C2×C6C2×C6
# reps16128122164161283224

Matrix representation of C2×C6×C3⋊Dic3 in GL5(𝔽13)

10000
012000
001200
000120
000012
,
40000
03000
00300
00040
00004
,
10000
09000
04300
00010
00001
,
10000
012000
001200
00090
00073
,
10000
012800
03100
0001212
00001

G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[4,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,9,4,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,9,7,0,0,0,0,3],[1,0,0,0,0,0,12,3,0,0,0,8,1,0,0,0,0,0,12,0,0,0,0,12,1] >;

C2×C6×C3⋊Dic3 in GAP, Magma, Sage, TeX

C_2\times C_6\times C_3\rtimes {\rm Dic}_3
% in TeX

G:=Group("C2xC6xC3:Dic3");
// GroupNames label

G:=SmallGroup(432,718);
// by ID

G=gap.SmallGroup(432,718);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,168,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=c^3=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽