Extensions 1→N→G→Q→1 with N=He33C4 and Q=C4

Direct product G=N×Q with N=He33C4 and Q=C4
dρLabelID
C4×He33C4144C4xHe3:3C4432,186

Semidirect products G=N:Q with N=He33C4 and Q=C4
extensionφ:Q→Out NdρLabelID
He33C41C4 = C4×He3⋊C4φ: C4/C2C2 ⊆ Out He33C4723He3:3C4:1C4432,275
He33C42C4 = C62.3D6φ: C4/C2C2 ⊆ Out He33C4144He3:3C4:2C4432,96
He33C43C4 = He3⋊C42φ: C4/C2C2 ⊆ Out He33C4144He3:3C4:3C4432,94
He33C44C4 = C62.29D6φ: C4/C2C2 ⊆ Out He33C4144He3:3C4:4C4432,187
He33C45C4 = C4⋊(He3⋊C4)φ: C4/C2C2 ⊆ Out He33C4726He3:3C4:5C4432,276

Non-split extensions G=N.Q with N=He33C4 and Q=C4
extensionφ:Q→Out NdρLabelID
He33C4.C4 = He3⋊C16φ: C4/C1C4 ⊆ Out He33C41446He3:3C4.C4432,233
He33C4.2C4 = C2×He32C8φ: C4/C2C2 ⊆ Out He33C4144He3:3C4.2C4432,277
He33C4.3C4 = He33M4(2)φ: C4/C2C2 ⊆ Out He33C4726He3:3C4.3C4432,82
He33C4.4C4 = C12.89S32φ: C4/C2C2 ⊆ Out He33C4726He3:3C4.4C4432,81
He33C4.5C4 = He36M4(2)φ: C4/C2C2 ⊆ Out He33C4726He3:3C4.5C4432,174
He33C4.6C4 = He34M4(2)φ: C4/C2C2 ⊆ Out He33C4726He3:3C4.6C4432,278
He33C4.7C4 = C8×He3⋊C2φ: trivial image723He3:3C4.7C4432,173

׿
×
𝔽