Copied to
clipboard

G = He3⋊C16order 432 = 24·33

The semidirect product of He3 and C16 acting via C16/C2=C8

non-abelian, soluble

Aliases: He3⋊C16, C6.1F9, C2.(He3⋊C8), (C2×He3).C8, C3.(C2.F9), He33C4.C4, He32C8.2C2, SmallGroup(432,233)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3⋊C16
C1C3He3C2×He3He33C4He32C8 — He3⋊C16
He3 — He3⋊C16
C1C2

Generators and relations for He3⋊C16
 G = < a,b,c,d | a3=b3=c3=d16=1, ab=ba, cac-1=ab-1, dad-1=c, bc=cb, dbd-1=b-1, dcd-1=ab-1c >

12C3
9C4
12C6
4C32
9C8
9C12
12Dic3
4C3×C6
27C16
9C24
12C3×Dic3
9C3⋊C16

Character table of He3⋊C16

 class 123A3B4A4B6A6B8A8B8C8D12A12B16A16B16C16D16E16F16G16H24A24B24C24D
 size 112249922499991818272727272727272718181818
ρ111111111111111111111111111    trivial
ρ211111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ311111111-1-1-1-111-iiii-i-i-ii-1-1-1-1    linear of order 4
ρ411111111-1-1-1-111i-i-i-iiii-i-1-1-1-1    linear of order 4
ρ51111-1-111i-ii-i-1-1ζ85ζ83ζ87ζ87ζ8ζ8ζ85ζ83-ii-ii    linear of order 8
ρ61111-1-111-ii-ii-1-1ζ83ζ85ζ8ζ8ζ87ζ87ζ83ζ85i-ii-i    linear of order 8
ρ71111-1-111i-ii-i-1-1ζ8ζ87ζ83ζ83ζ85ζ85ζ8ζ87-ii-ii    linear of order 8
ρ81111-1-111-ii-ii-1-1ζ87ζ8ζ85ζ85ζ83ζ83ζ87ζ8i-ii-i    linear of order 8
ρ91-111-ii-1-1ζ1614ζ1610ζ166ζ162i-iζ167ζ16ζ1613ζ165ζ1611ζ163ζ1615ζ169ζ162ζ166ζ1610ζ1614    linear of order 16
ρ101-111-ii-1-1ζ166ζ162ζ1614ζ1610i-iζ163ζ165ζ16ζ169ζ167ζ1615ζ1611ζ1613ζ1610ζ1614ζ162ζ166    linear of order 16
ρ111-111i-i-1-1ζ162ζ166ζ1610ζ1614-iiζ169ζ1615ζ163ζ1611ζ165ζ1613ζ16ζ167ζ1614ζ1610ζ166ζ162    linear of order 16
ρ121-111i-i-1-1ζ1610ζ1614ζ162ζ166-iiζ1613ζ1611ζ1615ζ167ζ169ζ16ζ165ζ163ζ166ζ162ζ1614ζ1610    linear of order 16
ρ131-111-ii-1-1ζ166ζ162ζ1614ζ1610i-iζ1611ζ1613ζ169ζ16ζ1615ζ167ζ163ζ165ζ1610ζ1614ζ162ζ166    linear of order 16
ρ141-111i-i-1-1ζ162ζ166ζ1610ζ1614-iiζ16ζ167ζ1611ζ163ζ1613ζ165ζ169ζ1615ζ1614ζ1610ζ166ζ162    linear of order 16
ρ151-111i-i-1-1ζ1610ζ1614ζ162ζ166-iiζ165ζ163ζ167ζ1615ζ16ζ169ζ1613ζ1611ζ166ζ162ζ1614ζ1610    linear of order 16
ρ161-111-ii-1-1ζ1614ζ1610ζ166ζ162i-iζ1615ζ169ζ165ζ1613ζ163ζ1611ζ167ζ16ζ162ζ166ζ1610ζ1614    linear of order 16
ρ1766-30-2-2-3022221100000000-1-1-1-1    orthogonal lifted from He3⋊C8
ρ1866-30-2-2-30-2-2-2-211000000001111    symplectic lifted from He3⋊C8, Schur index 2
ρ1966-3022-302i-2i2i-2i-1-100000000i-ii-i    complex lifted from He3⋊C8
ρ2066-3022-30-2i2i-2i2i-1-100000000-ii-ii    complex lifted from He3⋊C8
ρ216-6-30-2i2i308838587-ii00000000ζ83ζ8ζ87ζ85    complex faithful, Schur index 2
ρ226-6-302i-2i308785838i-i00000000ζ85ζ87ζ8ζ83    complex faithful, Schur index 2
ρ236-6-302i-2i308388785i-i00000000ζ8ζ83ζ85ζ87    complex faithful, Schur index 2
ρ246-6-30-2i2i308587883-ii00000000ζ87ζ85ζ83ζ8    complex faithful, Schur index 2
ρ25888-1008-1000000000000000000    orthogonal lifted from F9
ρ268-88-100-81000000000000000000    symplectic lifted from C2.F9, Schur index 2

Smallest permutation representation of He3⋊C16
On 144 points
Generators in S144
(1 35 117)(3 37 112)(4 58 97)(5 84 59)(6 20 133)(7 123 61)(8 87 42)(9 43 125)(11 45 104)(12 50 105)(13 92 51)(14 28 141)(15 115 53)(16 95 34)(17 57 82)(18 79 83)(19 121 80)(21 100 66)(22 124 62)(23 63 102)(25 49 90)(26 71 91)(27 113 72)(29 108 74)(30 116 54)(31 55 110)(33 142 94)(36 56 77)(38 120 131)(39 132 98)(41 134 86)(44 64 69)(46 128 139)(47 140 106)(67 135 101)(68 88 136)(70 127 138)(75 143 109)(76 96 144)(78 119 130)(81 111 118)(85 99 122)(89 103 126)(93 107 114)
(1 31 144)(2 129 32)(3 17 130)(4 131 18)(5 19 132)(6 133 20)(7 21 134)(8 135 22)(9 23 136)(10 137 24)(11 25 138)(12 139 26)(13 27 140)(14 141 28)(15 29 142)(16 143 30)(33 53 74)(34 75 54)(35 55 76)(36 77 56)(37 57 78)(38 79 58)(39 59 80)(40 65 60)(41 61 66)(42 67 62)(43 63 68)(44 69 64)(45 49 70)(46 71 50)(47 51 72)(48 73 52)(81 111 118)(82 119 112)(83 97 120)(84 121 98)(85 99 122)(86 123 100)(87 101 124)(88 125 102)(89 103 126)(90 127 104)(91 105 128)(92 113 106)(93 107 114)(94 115 108)(95 109 116)(96 117 110)
(2 36 111)(3 57 112)(4 83 58)(5 19 132)(6 122 60)(7 86 41)(8 42 124)(10 44 103)(11 49 104)(12 91 50)(13 27 140)(14 114 52)(15 94 33)(16 34 116)(17 78 82)(18 120 79)(20 99 65)(21 123 61)(22 62 101)(24 64 89)(25 70 90)(26 128 71)(28 107 73)(29 115 53)(30 54 109)(32 56 81)(35 55 76)(37 119 130)(38 131 97)(40 133 85)(43 63 68)(45 127 138)(46 139 105)(48 141 93)(66 134 100)(67 87 135)(69 126 137)(74 142 108)(75 95 143)(77 118 129)(84 98 121)(88 102 125)(92 106 113)(96 110 117)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,35,117)(3,37,112)(4,58,97)(5,84,59)(6,20,133)(7,123,61)(8,87,42)(9,43,125)(11,45,104)(12,50,105)(13,92,51)(14,28,141)(15,115,53)(16,95,34)(17,57,82)(18,79,83)(19,121,80)(21,100,66)(22,124,62)(23,63,102)(25,49,90)(26,71,91)(27,113,72)(29,108,74)(30,116,54)(31,55,110)(33,142,94)(36,56,77)(38,120,131)(39,132,98)(41,134,86)(44,64,69)(46,128,139)(47,140,106)(67,135,101)(68,88,136)(70,127,138)(75,143,109)(76,96,144)(78,119,130)(81,111,118)(85,99,122)(89,103,126)(93,107,114), (1,31,144)(2,129,32)(3,17,130)(4,131,18)(5,19,132)(6,133,20)(7,21,134)(8,135,22)(9,23,136)(10,137,24)(11,25,138)(12,139,26)(13,27,140)(14,141,28)(15,29,142)(16,143,30)(33,53,74)(34,75,54)(35,55,76)(36,77,56)(37,57,78)(38,79,58)(39,59,80)(40,65,60)(41,61,66)(42,67,62)(43,63,68)(44,69,64)(45,49,70)(46,71,50)(47,51,72)(48,73,52)(81,111,118)(82,119,112)(83,97,120)(84,121,98)(85,99,122)(86,123,100)(87,101,124)(88,125,102)(89,103,126)(90,127,104)(91,105,128)(92,113,106)(93,107,114)(94,115,108)(95,109,116)(96,117,110), (2,36,111)(3,57,112)(4,83,58)(5,19,132)(6,122,60)(7,86,41)(8,42,124)(10,44,103)(11,49,104)(12,91,50)(13,27,140)(14,114,52)(15,94,33)(16,34,116)(17,78,82)(18,120,79)(20,99,65)(21,123,61)(22,62,101)(24,64,89)(25,70,90)(26,128,71)(28,107,73)(29,115,53)(30,54,109)(32,56,81)(35,55,76)(37,119,130)(38,131,97)(40,133,85)(43,63,68)(45,127,138)(46,139,105)(48,141,93)(66,134,100)(67,87,135)(69,126,137)(74,142,108)(75,95,143)(77,118,129)(84,98,121)(88,102,125)(92,106,113)(96,110,117), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (1,35,117)(3,37,112)(4,58,97)(5,84,59)(6,20,133)(7,123,61)(8,87,42)(9,43,125)(11,45,104)(12,50,105)(13,92,51)(14,28,141)(15,115,53)(16,95,34)(17,57,82)(18,79,83)(19,121,80)(21,100,66)(22,124,62)(23,63,102)(25,49,90)(26,71,91)(27,113,72)(29,108,74)(30,116,54)(31,55,110)(33,142,94)(36,56,77)(38,120,131)(39,132,98)(41,134,86)(44,64,69)(46,128,139)(47,140,106)(67,135,101)(68,88,136)(70,127,138)(75,143,109)(76,96,144)(78,119,130)(81,111,118)(85,99,122)(89,103,126)(93,107,114), (1,31,144)(2,129,32)(3,17,130)(4,131,18)(5,19,132)(6,133,20)(7,21,134)(8,135,22)(9,23,136)(10,137,24)(11,25,138)(12,139,26)(13,27,140)(14,141,28)(15,29,142)(16,143,30)(33,53,74)(34,75,54)(35,55,76)(36,77,56)(37,57,78)(38,79,58)(39,59,80)(40,65,60)(41,61,66)(42,67,62)(43,63,68)(44,69,64)(45,49,70)(46,71,50)(47,51,72)(48,73,52)(81,111,118)(82,119,112)(83,97,120)(84,121,98)(85,99,122)(86,123,100)(87,101,124)(88,125,102)(89,103,126)(90,127,104)(91,105,128)(92,113,106)(93,107,114)(94,115,108)(95,109,116)(96,117,110), (2,36,111)(3,57,112)(4,83,58)(5,19,132)(6,122,60)(7,86,41)(8,42,124)(10,44,103)(11,49,104)(12,91,50)(13,27,140)(14,114,52)(15,94,33)(16,34,116)(17,78,82)(18,120,79)(20,99,65)(21,123,61)(22,62,101)(24,64,89)(25,70,90)(26,128,71)(28,107,73)(29,115,53)(30,54,109)(32,56,81)(35,55,76)(37,119,130)(38,131,97)(40,133,85)(43,63,68)(45,127,138)(46,139,105)(48,141,93)(66,134,100)(67,87,135)(69,126,137)(74,142,108)(75,95,143)(77,118,129)(84,98,121)(88,102,125)(92,106,113)(96,110,117), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,35,117),(3,37,112),(4,58,97),(5,84,59),(6,20,133),(7,123,61),(8,87,42),(9,43,125),(11,45,104),(12,50,105),(13,92,51),(14,28,141),(15,115,53),(16,95,34),(17,57,82),(18,79,83),(19,121,80),(21,100,66),(22,124,62),(23,63,102),(25,49,90),(26,71,91),(27,113,72),(29,108,74),(30,116,54),(31,55,110),(33,142,94),(36,56,77),(38,120,131),(39,132,98),(41,134,86),(44,64,69),(46,128,139),(47,140,106),(67,135,101),(68,88,136),(70,127,138),(75,143,109),(76,96,144),(78,119,130),(81,111,118),(85,99,122),(89,103,126),(93,107,114)], [(1,31,144),(2,129,32),(3,17,130),(4,131,18),(5,19,132),(6,133,20),(7,21,134),(8,135,22),(9,23,136),(10,137,24),(11,25,138),(12,139,26),(13,27,140),(14,141,28),(15,29,142),(16,143,30),(33,53,74),(34,75,54),(35,55,76),(36,77,56),(37,57,78),(38,79,58),(39,59,80),(40,65,60),(41,61,66),(42,67,62),(43,63,68),(44,69,64),(45,49,70),(46,71,50),(47,51,72),(48,73,52),(81,111,118),(82,119,112),(83,97,120),(84,121,98),(85,99,122),(86,123,100),(87,101,124),(88,125,102),(89,103,126),(90,127,104),(91,105,128),(92,113,106),(93,107,114),(94,115,108),(95,109,116),(96,117,110)], [(2,36,111),(3,57,112),(4,83,58),(5,19,132),(6,122,60),(7,86,41),(8,42,124),(10,44,103),(11,49,104),(12,91,50),(13,27,140),(14,114,52),(15,94,33),(16,34,116),(17,78,82),(18,120,79),(20,99,65),(21,123,61),(22,62,101),(24,64,89),(25,70,90),(26,128,71),(28,107,73),(29,115,53),(30,54,109),(32,56,81),(35,55,76),(37,119,130),(38,131,97),(40,133,85),(43,63,68),(45,127,138),(46,139,105),(48,141,93),(66,134,100),(67,87,135),(69,126,137),(74,142,108),(75,95,143),(77,118,129),(84,98,121),(88,102,125),(92,106,113),(96,110,117)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

Matrix representation of He3⋊C16 in GL6(𝔽97)

11969500
0019600
0009601
110969696
1009600
0109600
,
0960000
1960000
10969600
0961000
10009696
0960010
,
100000
010000
000100
11969600
11009696
000010
,
582275397539
365839613961
022753900
585839617539
360396100
022007539

G:=sub<GL(6,GF(97))| [1,0,0,1,1,0,1,0,0,1,0,1,96,1,0,0,0,0,95,96,96,96,96,96,0,0,0,96,0,0,0,0,1,96,0,0],[0,1,1,0,1,0,96,96,0,96,0,96,0,0,96,1,0,0,0,0,96,0,0,0,0,0,0,0,96,1,0,0,0,0,96,0],[1,0,0,1,1,0,0,1,0,1,1,0,0,0,0,96,0,0,0,0,1,96,0,0,0,0,0,0,96,1,0,0,0,0,96,0],[58,36,0,58,36,0,22,58,22,58,0,22,75,39,75,39,39,0,39,61,39,61,61,0,75,39,0,75,0,75,39,61,0,39,0,39] >;

He3⋊C16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes C_{16}
% in TeX

G:=Group("He3:C16");
// GroupNames label

G:=SmallGroup(432,233);
// by ID

G=gap.SmallGroup(432,233);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,14,36,58,1684,1971,1558,4709,8748,4051,915,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^16=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=c,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a*b^-1*c>;
// generators/relations

Export

Subgroup lattice of He3⋊C16 in TeX
Character table of He3⋊C16 in TeX

׿
×
𝔽