# Extensions 1→N→G→Q→1 with N=C6 and Q=D4×C9

Direct product G=N×Q with N=C6 and Q=D4×C9
dρLabelID
D4×C3×C18216D4xC3xC18432,403

Semidirect products G=N:Q with N=C6 and Q=D4×C9
extensionφ:Q→Aut NdρLabelID
C61(D4×C9) = C18×D12φ: D4×C9/C36C2 ⊆ Aut C6144C6:1(D4xC9)432,346
C62(D4×C9) = C18×C3⋊D4φ: D4×C9/C2×C18C2 ⊆ Aut C672C6:2(D4xC9)432,375

Non-split extensions G=N.Q with N=C6 and Q=D4×C9
extensionφ:Q→Aut NdρLabelID
C6.1(D4×C9) = C9×C24⋊C2φ: D4×C9/C36C2 ⊆ Aut C61442C6.1(D4xC9)432,111
C6.2(D4×C9) = C9×D24φ: D4×C9/C36C2 ⊆ Aut C61442C6.2(D4xC9)432,112
C6.3(D4×C9) = C9×Dic12φ: D4×C9/C36C2 ⊆ Aut C61442C6.3(D4xC9)432,113
C6.4(D4×C9) = C9×C4⋊Dic3φ: D4×C9/C36C2 ⊆ Aut C6144C6.4(D4xC9)432,133
C6.5(D4×C9) = C9×Dic3⋊C4φ: D4×C9/C2×C18C2 ⊆ Aut C6144C6.5(D4xC9)432,132
C6.6(D4×C9) = C9×D6⋊C4φ: D4×C9/C2×C18C2 ⊆ Aut C6144C6.6(D4xC9)432,135
C6.7(D4×C9) = C9×D4⋊S3φ: D4×C9/C2×C18C2 ⊆ Aut C6724C6.7(D4xC9)432,150
C6.8(D4×C9) = C9×D4.S3φ: D4×C9/C2×C18C2 ⊆ Aut C6724C6.8(D4xC9)432,151
C6.9(D4×C9) = C9×Q82S3φ: D4×C9/C2×C18C2 ⊆ Aut C61444C6.9(D4xC9)432,158
C6.10(D4×C9) = C9×C3⋊Q16φ: D4×C9/C2×C18C2 ⊆ Aut C61444C6.10(D4xC9)432,159
C6.11(D4×C9) = C9×C6.D4φ: D4×C9/C2×C18C2 ⊆ Aut C672C6.11(D4xC9)432,165
C6.12(D4×C9) = C22⋊C4×C27central extension (φ=1)216C6.12(D4xC9)432,21
C6.13(D4×C9) = C4⋊C4×C27central extension (φ=1)432C6.13(D4xC9)432,22
C6.14(D4×C9) = D8×C27central extension (φ=1)2162C6.14(D4xC9)432,25
C6.15(D4×C9) = SD16×C27central extension (φ=1)2162C6.15(D4xC9)432,26
C6.16(D4×C9) = Q16×C27central extension (φ=1)4322C6.16(D4xC9)432,27
C6.17(D4×C9) = D4×C54central extension (φ=1)216C6.17(D4xC9)432,54
C6.18(D4×C9) = C22⋊C4×C3×C9central extension (φ=1)216C6.18(D4xC9)432,203
C6.19(D4×C9) = C4⋊C4×C3×C9central extension (φ=1)432C6.19(D4xC9)432,206
C6.20(D4×C9) = D8×C3×C9central extension (φ=1)216C6.20(D4xC9)432,215
C6.21(D4×C9) = SD16×C3×C9central extension (φ=1)216C6.21(D4xC9)432,218
C6.22(D4×C9) = Q16×C3×C9central extension (φ=1)432C6.22(D4xC9)432,221

׿
×
𝔽