Extensions 1→N→G→Q→1 with N=S3×C6 and Q=Dic3

Direct product G=N×Q with N=S3×C6 and Q=Dic3
dρLabelID
S3×C6×Dic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=S3×C6 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1Dic3 = C3×D6⋊Dic3φ: Dic3/C6C2 ⊆ Out S3×C648(S3xC6):1Dic3432,426
(S3×C6)⋊2Dic3 = C62.77D6φ: Dic3/C6C2 ⊆ Out S3×C6144(S3xC6):2Dic3432,449
(S3×C6)⋊3Dic3 = C2×S3×C3⋊Dic3φ: Dic3/C6C2 ⊆ Out S3×C6144(S3xC6):3Dic3432,674

Non-split extensions G=N.Q with N=S3×C6 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(S3×C6).1Dic3 = S3×C9⋊C8φ: Dic3/C6C2 ⊆ Out S3×C61444(S3xC6).1Dic3432,66
(S3×C6).2Dic3 = D6.Dic9φ: Dic3/C6C2 ⊆ Out S3×C61444(S3xC6).2Dic3432,67
(S3×C6).3Dic3 = D6⋊Dic9φ: Dic3/C6C2 ⊆ Out S3×C6144(S3xC6).3Dic3432,93
(S3×C6).4Dic3 = C2×S3×Dic9φ: Dic3/C6C2 ⊆ Out S3×C6144(S3xC6).4Dic3432,308
(S3×C6).5Dic3 = C3×D6.Dic3φ: Dic3/C6C2 ⊆ Out S3×C6484(S3xC6).5Dic3432,416
(S3×C6).6Dic3 = S3×C324C8φ: Dic3/C6C2 ⊆ Out S3×C6144(S3xC6).6Dic3432,430
(S3×C6).7Dic3 = C337M4(2)φ: Dic3/C6C2 ⊆ Out S3×C6144(S3xC6).7Dic3432,433
(S3×C6).8Dic3 = C3×S3×C3⋊C8φ: trivial image484(S3xC6).8Dic3432,414

׿
×
𝔽