Copied to
clipboard

G = C2×S3×Dic9order 432 = 24·33

Direct product of C2, S3 and Dic9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×S3×Dic9, D6.11D18, C62.65D6, C183(C4×S3), (S3×C18)⋊3C4, C61(C2×Dic9), (C6×Dic9)⋊6C2, (S3×C6).31D6, (C2×C6).19D18, (C2×C18).20D6, C9⋊Dic36C22, (S3×C6).4Dic3, C6.27(S3×Dic3), (C22×S3).2D9, C31(C22×Dic9), C22.15(S3×D9), C6.20(C22×D9), C18.20(C22×S3), (C6×C18).14C22, (C3×C18).20C23, (C3×Dic9)⋊6C22, (S3×C18).14C22, C32.2(C22×Dic3), C94(S3×C2×C4), C2.4(C2×S3×D9), C6.39(C2×S32), (C2×C6).26S32, (S3×C2×C6).3S3, (S3×C9)⋊2(C2×C4), (C3×C18)⋊3(C2×C4), (S3×C2×C18).3C2, (C3×C9)⋊4(C22×C4), C3.3(C2×S3×Dic3), (C2×C9⋊Dic3)⋊6C2, (C3×S3).(C2×Dic3), (C3×C6).88(C22×S3), (C3×C6).34(C2×Dic3), SmallGroup(432,308)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C2×S3×Dic9
C1C3C32C3×C9C3×C18S3×C18S3×Dic9 — C2×S3×Dic9
C3×C9 — C2×S3×Dic9
C1C22

Generators and relations for C2×S3×Dic9
 G = < a,b,c,d,e | a2=b3=c2=d18=1, e2=d9, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 748 in 178 conjugacy classes, 77 normal (25 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, C23, C9, C9, C32, Dic3, C12, D6, C2×C6, C2×C6, C22×C4, C18, C18, C18, C3×S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, C3×C9, Dic9, Dic9, C2×C18, C2×C18, C3×Dic3, C3⋊Dic3, S3×C6, C62, S3×C2×C4, C22×Dic3, S3×C9, C3×C18, C3×C18, C2×Dic9, C2×Dic9, C22×C18, S3×Dic3, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C3×Dic9, C9⋊Dic3, S3×C18, C6×C18, C22×Dic9, C2×S3×Dic3, S3×Dic9, C6×Dic9, C2×C9⋊Dic3, S3×C2×C18, C2×S3×Dic9
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, D9, C4×S3, C2×Dic3, C22×S3, Dic9, D18, S32, S3×C2×C4, C22×Dic3, C2×Dic9, C22×D9, S3×Dic3, C2×S32, S3×D9, C22×Dic9, C2×S3×Dic3, S3×Dic9, C2×S3×D9, C2×S3×Dic9

Smallest permutation representation of C2×S3×Dic9
On 144 points
Generators in S144
(1 32)(2 33)(3 34)(4 35)(5 36)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(37 65)(38 66)(39 67)(40 68)(41 69)(42 70)(43 71)(44 72)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)(85 97)(86 98)(87 99)(88 100)(89 101)(90 102)(109 133)(110 134)(111 135)(112 136)(113 137)(114 138)(115 139)(116 140)(117 141)(118 142)(119 143)(120 144)(121 127)(122 128)(123 129)(124 130)(125 131)(126 132)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)(55 67 61)(56 68 62)(57 69 63)(58 70 64)(59 71 65)(60 72 66)(73 85 79)(74 86 80)(75 87 81)(76 88 82)(77 89 83)(78 90 84)(91 103 97)(92 104 98)(93 105 99)(94 106 100)(95 107 101)(96 108 102)(109 115 121)(110 116 122)(111 117 123)(112 118 124)(113 119 125)(114 120 126)(127 133 139)(128 134 140)(129 135 141)(130 136 142)(131 137 143)(132 138 144)
(1 79)(2 80)(3 81)(4 82)(5 83)(6 84)(7 85)(8 86)(9 87)(10 88)(11 89)(12 90)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 96)(20 97)(21 98)(22 99)(23 100)(24 101)(25 102)(26 103)(27 104)(28 105)(29 106)(30 107)(31 108)(32 91)(33 92)(34 93)(35 94)(36 95)(37 110)(38 111)(39 112)(40 113)(41 114)(42 115)(43 116)(44 117)(45 118)(46 119)(47 120)(48 121)(49 122)(50 123)(51 124)(52 125)(53 126)(54 109)(55 142)(56 143)(57 144)(58 127)(59 128)(60 129)(61 130)(62 131)(63 132)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(71 140)(72 141)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 47 10 38)(2 46 11 37)(3 45 12 54)(4 44 13 53)(5 43 14 52)(6 42 15 51)(7 41 16 50)(8 40 17 49)(9 39 18 48)(19 70 28 61)(20 69 29 60)(21 68 30 59)(22 67 31 58)(23 66 32 57)(24 65 33 56)(25 64 34 55)(26 63 35 72)(27 62 36 71)(73 126 82 117)(74 125 83 116)(75 124 84 115)(76 123 85 114)(77 122 86 113)(78 121 87 112)(79 120 88 111)(80 119 89 110)(81 118 90 109)(91 144 100 135)(92 143 101 134)(93 142 102 133)(94 141 103 132)(95 140 104 131)(96 139 105 130)(97 138 106 129)(98 137 107 128)(99 136 108 127)

G:=sub<Sym(144)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)(85,97)(86,98)(87,99)(88,100)(89,101)(90,102)(109,133)(110,134)(111,135)(112,136)(113,137)(114,138)(115,139)(116,140)(117,141)(118,142)(119,143)(120,144)(121,127)(122,128)(123,129)(124,130)(125,131)(126,132), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84)(91,103,97)(92,104,98)(93,105,99)(94,106,100)(95,107,101)(96,108,102)(109,115,121)(110,116,122)(111,117,123)(112,118,124)(113,119,125)(114,120,126)(127,133,139)(128,134,140)(129,135,141)(130,136,142)(131,137,143)(132,138,144), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,96)(20,97)(21,98)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,91)(33,92)(34,93)(35,94)(36,95)(37,110)(38,111)(39,112)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,109)(55,142)(56,143)(57,144)(58,127)(59,128)(60,129)(61,130)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,140)(72,141), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,47,10,38)(2,46,11,37)(3,45,12,54)(4,44,13,53)(5,43,14,52)(6,42,15,51)(7,41,16,50)(8,40,17,49)(9,39,18,48)(19,70,28,61)(20,69,29,60)(21,68,30,59)(22,67,31,58)(23,66,32,57)(24,65,33,56)(25,64,34,55)(26,63,35,72)(27,62,36,71)(73,126,82,117)(74,125,83,116)(75,124,84,115)(76,123,85,114)(77,122,86,113)(78,121,87,112)(79,120,88,111)(80,119,89,110)(81,118,90,109)(91,144,100,135)(92,143,101,134)(93,142,102,133)(94,141,103,132)(95,140,104,131)(96,139,105,130)(97,138,106,129)(98,137,107,128)(99,136,108,127)>;

G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)(85,97)(86,98)(87,99)(88,100)(89,101)(90,102)(109,133)(110,134)(111,135)(112,136)(113,137)(114,138)(115,139)(116,140)(117,141)(118,142)(119,143)(120,144)(121,127)(122,128)(123,129)(124,130)(125,131)(126,132), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84)(91,103,97)(92,104,98)(93,105,99)(94,106,100)(95,107,101)(96,108,102)(109,115,121)(110,116,122)(111,117,123)(112,118,124)(113,119,125)(114,120,126)(127,133,139)(128,134,140)(129,135,141)(130,136,142)(131,137,143)(132,138,144), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,96)(20,97)(21,98)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,91)(33,92)(34,93)(35,94)(36,95)(37,110)(38,111)(39,112)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,109)(55,142)(56,143)(57,144)(58,127)(59,128)(60,129)(61,130)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,140)(72,141), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,47,10,38)(2,46,11,37)(3,45,12,54)(4,44,13,53)(5,43,14,52)(6,42,15,51)(7,41,16,50)(8,40,17,49)(9,39,18,48)(19,70,28,61)(20,69,29,60)(21,68,30,59)(22,67,31,58)(23,66,32,57)(24,65,33,56)(25,64,34,55)(26,63,35,72)(27,62,36,71)(73,126,82,117)(74,125,83,116)(75,124,84,115)(76,123,85,114)(77,122,86,113)(78,121,87,112)(79,120,88,111)(80,119,89,110)(81,118,90,109)(91,144,100,135)(92,143,101,134)(93,142,102,133)(94,141,103,132)(95,140,104,131)(96,139,105,130)(97,138,106,129)(98,137,107,128)(99,136,108,127) );

G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(37,65),(38,66),(39,67),(40,68),(41,69),(42,70),(43,71),(44,72),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96),(85,97),(86,98),(87,99),(88,100),(89,101),(90,102),(109,133),(110,134),(111,135),(112,136),(113,137),(114,138),(115,139),(116,140),(117,141),(118,142),(119,143),(120,144),(121,127),(122,128),(123,129),(124,130),(125,131),(126,132)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48),(55,67,61),(56,68,62),(57,69,63),(58,70,64),(59,71,65),(60,72,66),(73,85,79),(74,86,80),(75,87,81),(76,88,82),(77,89,83),(78,90,84),(91,103,97),(92,104,98),(93,105,99),(94,106,100),(95,107,101),(96,108,102),(109,115,121),(110,116,122),(111,117,123),(112,118,124),(113,119,125),(114,120,126),(127,133,139),(128,134,140),(129,135,141),(130,136,142),(131,137,143),(132,138,144)], [(1,79),(2,80),(3,81),(4,82),(5,83),(6,84),(7,85),(8,86),(9,87),(10,88),(11,89),(12,90),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,96),(20,97),(21,98),(22,99),(23,100),(24,101),(25,102),(26,103),(27,104),(28,105),(29,106),(30,107),(31,108),(32,91),(33,92),(34,93),(35,94),(36,95),(37,110),(38,111),(39,112),(40,113),(41,114),(42,115),(43,116),(44,117),(45,118),(46,119),(47,120),(48,121),(49,122),(50,123),(51,124),(52,125),(53,126),(54,109),(55,142),(56,143),(57,144),(58,127),(59,128),(60,129),(61,130),(62,131),(63,132),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(71,140),(72,141)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,47,10,38),(2,46,11,37),(3,45,12,54),(4,44,13,53),(5,43,14,52),(6,42,15,51),(7,41,16,50),(8,40,17,49),(9,39,18,48),(19,70,28,61),(20,69,29,60),(21,68,30,59),(22,67,31,58),(23,66,32,57),(24,65,33,56),(25,64,34,55),(26,63,35,72),(27,62,36,71),(73,126,82,117),(74,125,83,116),(75,124,84,115),(76,123,85,114),(77,122,86,113),(78,121,87,112),(79,120,88,111),(80,119,89,110),(81,118,90,109),(91,144,100,135),(92,143,101,134),(93,142,102,133),(94,141,103,132),(95,140,104,131),(96,139,105,130),(97,138,106,129),(98,137,107,128),(99,136,108,127)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I6J6K6L6M9A9B9C9D9E9F12A12B12C12D18A···18I18J···18R18S···18AD
order12222222333444444446···666666669999991212121218···1818···1818···18
size111133332249999272727272···24446666222444181818182···24···46···6

72 irreducible representations

dim111111222222222222444444
type+++++++++-+++-+++-++-+
imageC1C2C2C2C2C4S3S3D6D6Dic3D6D6D9C4×S3Dic9D18D18S32S3×Dic3C2×S32S3×D9S3×Dic9C2×S3×D9
kernelC2×S3×Dic9S3×Dic9C6×Dic9C2×C9⋊Dic3S3×C2×C18S3×C18C2×Dic9S3×C2×C6Dic9C2×C18S3×C6S3×C6C62C22×S3C18D6D6C2×C6C2×C6C6C6C22C2C2
# reps1411181121421341263121363

Matrix representation of C2×S3×Dic9 in GL4(𝔽37) generated by

1000
0100
00360
00036
,
36100
36000
0010
0001
,
03600
36000
00360
00036
,
36000
03600
001120
001731
,
6000
0600
00360
00361
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,36,0,0,0,0,36],[36,36,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,36,0,0,36,0,0,0,0,0,36,0,0,0,0,36],[36,0,0,0,0,36,0,0,0,0,11,17,0,0,20,31],[6,0,0,0,0,6,0,0,0,0,36,36,0,0,0,1] >;

C2×S3×Dic9 in GAP, Magma, Sage, TeX

C_2\times S_3\times {\rm Dic}_9
% in TeX

G:=Group("C2xS3xDic9");
// GroupNames label

G:=SmallGroup(432,308);
// by ID

G=gap.SmallGroup(432,308);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^18=1,e^2=d^9,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽