# Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C12

Direct product G=N×Q with N=S3×C6 and Q=C12
dρLabelID
S3×C6×C12144S3xC6xC12432,701

Semidirect products G=N:Q with N=S3×C6 and Q=C12
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1C12 = C3×D6⋊Dic3φ: C12/C6C2 ⊆ Out S3×C648(S3xC6):1C12432,426
(S3×C6)⋊2C12 = C32×D6⋊C4φ: C12/C6C2 ⊆ Out S3×C6144(S3xC6):2C12432,474
(S3×C6)⋊3C12 = S3×C6×Dic3φ: C12/C6C2 ⊆ Out S3×C648(S3xC6):3C12432,651

Non-split extensions G=N.Q with N=S3×C6 and Q=C12
extensionφ:Q→Out NdρLabelID
(S3×C6).1C12 = C9×C8⋊S3φ: C12/C6C2 ⊆ Out S3×C61442(S3xC6).1C12432,110
(S3×C6).2C12 = C9×D6⋊C4φ: C12/C6C2 ⊆ Out S3×C6144(S3xC6).2C12432,135
(S3×C6).3C12 = C3×S3×C3⋊C8φ: C12/C6C2 ⊆ Out S3×C6484(S3xC6).3C12432,414
(S3×C6).4C12 = C3×D6.Dic3φ: C12/C6C2 ⊆ Out S3×C6484(S3xC6).4C12432,416
(S3×C6).5C12 = C32×C8⋊S3φ: C12/C6C2 ⊆ Out S3×C6144(S3xC6).5C12432,465
(S3×C6).6C12 = S3×C72φ: trivial image1442(S3xC6).6C12432,109
(S3×C6).7C12 = S3×C2×C36φ: trivial image144(S3xC6).7C12432,345
(S3×C6).8C12 = S3×C3×C24φ: trivial image144(S3xC6).8C12432,464

׿
×
𝔽