Extensions 1→N→G→Q→1 with N=C2xC12 and Q=C3xC6

Direct product G=NxQ with N=C2xC12 and Q=C3xC6
dρLabelID
C62xC12432C6^2xC12432,730

Semidirect products G=N:Q with N=C2xC12 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
(C2xC12):1(C3xC6) = C32xD6:C4φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12):1(C3xC6)432,474
(C2xC12):2(C3xC6) = C22:C4xC33φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12):2(C3xC6)432,513
(C2xC12):3(C3xC6) = C3xC6xD12φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12):3(C3xC6)432,702
(C2xC12):4(C3xC6) = C32xC4oD12φ: C3xC6/C32C2 ⊆ Aut C2xC1272(C2xC12):4(C3xC6)432,703
(C2xC12):5(C3xC6) = S3xC6xC12φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12):5(C3xC6)432,701
(C2xC12):6(C3xC6) = D4xC32xC6φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12):6(C3xC6)432,731
(C2xC12):7(C3xC6) = C4oD4xC33φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12):7(C3xC6)432,733

Non-split extensions G=N.Q with N=C2xC12 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
(C2xC12).1(C3xC6) = C22:C4xC3xC9φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12).1(C3xC6)432,203
(C2xC12).2(C3xC6) = C22:C4xHe3φ: C3xC6/C32C2 ⊆ Aut C2xC1272(C2xC12).2(C3xC6)432,204
(C2xC12).3(C3xC6) = C22:C4x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C2xC1272(C2xC12).3(C3xC6)432,205
(C2xC12).4(C3xC6) = C4:C4xC3xC9φ: C3xC6/C32C2 ⊆ Aut C2xC12432(C2xC12).4(C3xC6)432,206
(C2xC12).5(C3xC6) = C4:C4xHe3φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).5(C3xC6)432,207
(C2xC12).6(C3xC6) = C4:C4x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).6(C3xC6)432,208
(C2xC12).7(C3xC6) = C32xDic3:C4φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).7(C3xC6)432,472
(C2xC12).8(C3xC6) = C32xC4:Dic3φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).8(C3xC6)432,473
(C2xC12).9(C3xC6) = C3xC6xDic6φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).9(C3xC6)432,700
(C2xC12).10(C3xC6) = C32xC4.Dic3φ: C3xC6/C32C2 ⊆ Aut C2xC1272(C2xC12).10(C3xC6)432,470
(C2xC12).11(C3xC6) = C3xC6xC3:C8φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).11(C3xC6)432,469
(C2xC12).12(C3xC6) = Dic3xC3xC12φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).12(C3xC6)432,471
(C2xC12).13(C3xC6) = M4(2)xC3xC9φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12).13(C3xC6)432,212
(C2xC12).14(C3xC6) = M4(2)xHe3φ: C3xC6/C32C2 ⊆ Aut C2xC12726(C2xC12).14(C3xC6)432,213
(C2xC12).15(C3xC6) = M4(2)x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C2xC12726(C2xC12).15(C3xC6)432,214
(C2xC12).16(C3xC6) = D4xC3xC18φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12).16(C3xC6)432,403
(C2xC12).17(C3xC6) = C2xD4xHe3φ: C3xC6/C32C2 ⊆ Aut C2xC1272(C2xC12).17(C3xC6)432,404
(C2xC12).18(C3xC6) = C2xD4x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C2xC1272(C2xC12).18(C3xC6)432,405
(C2xC12).19(C3xC6) = Q8xC3xC18φ: C3xC6/C32C2 ⊆ Aut C2xC12432(C2xC12).19(C3xC6)432,406
(C2xC12).20(C3xC6) = C2xQ8xHe3φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).20(C3xC6)432,407
(C2xC12).21(C3xC6) = C2xQ8x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C2xC12144(C2xC12).21(C3xC6)432,408
(C2xC12).22(C3xC6) = C4oD4xC3xC9φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12).22(C3xC6)432,409
(C2xC12).23(C3xC6) = C4oD4xHe3φ: C3xC6/C32C2 ⊆ Aut C2xC12726(C2xC12).23(C3xC6)432,410
(C2xC12).24(C3xC6) = C4oD4x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C2xC12726(C2xC12).24(C3xC6)432,411
(C2xC12).25(C3xC6) = C4:C4xC33φ: C3xC6/C32C2 ⊆ Aut C2xC12432(C2xC12).25(C3xC6)432,514
(C2xC12).26(C3xC6) = M4(2)xC33φ: C3xC6/C32C2 ⊆ Aut C2xC12216(C2xC12).26(C3xC6)432,516
(C2xC12).27(C3xC6) = Q8xC32xC6φ: C3xC6/C32C2 ⊆ Aut C2xC12432(C2xC12).27(C3xC6)432,732
(C2xC12).28(C3xC6) = C42xHe3central extension (φ=1)144(C2xC12).28(C3xC6)432,201
(C2xC12).29(C3xC6) = C42x3- 1+2central extension (φ=1)144(C2xC12).29(C3xC6)432,202
(C2xC12).30(C3xC6) = C2xC8xHe3central extension (φ=1)144(C2xC12).30(C3xC6)432,210
(C2xC12).31(C3xC6) = C2xC8x3- 1+2central extension (φ=1)144(C2xC12).31(C3xC6)432,211
(C2xC12).32(C3xC6) = C22xC4xHe3central extension (φ=1)144(C2xC12).32(C3xC6)432,401
(C2xC12).33(C3xC6) = C22xC4x3- 1+2central extension (φ=1)144(C2xC12).33(C3xC6)432,402

׿
x
:
Z
F
o
wr
Q
<