extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC12).1(C3xC6) = C22:C4xC3xC9 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).1(C3xC6) | 432,203 |
(C2xC12).2(C3xC6) = C22:C4xHe3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).2(C3xC6) | 432,204 |
(C2xC12).3(C3xC6) = C22:C4x3- 1+2 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).3(C3xC6) | 432,205 |
(C2xC12).4(C3xC6) = C4:C4xC3xC9 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).4(C3xC6) | 432,206 |
(C2xC12).5(C3xC6) = C4:C4xHe3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).5(C3xC6) | 432,207 |
(C2xC12).6(C3xC6) = C4:C4x3- 1+2 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).6(C3xC6) | 432,208 |
(C2xC12).7(C3xC6) = C32xDic3:C4 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).7(C3xC6) | 432,472 |
(C2xC12).8(C3xC6) = C32xC4:Dic3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).8(C3xC6) | 432,473 |
(C2xC12).9(C3xC6) = C3xC6xDic6 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).9(C3xC6) | 432,700 |
(C2xC12).10(C3xC6) = C32xC4.Dic3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).10(C3xC6) | 432,470 |
(C2xC12).11(C3xC6) = C3xC6xC3:C8 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).11(C3xC6) | 432,469 |
(C2xC12).12(C3xC6) = Dic3xC3xC12 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).12(C3xC6) | 432,471 |
(C2xC12).13(C3xC6) = M4(2)xC3xC9 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).13(C3xC6) | 432,212 |
(C2xC12).14(C3xC6) = M4(2)xHe3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | 6 | (C2xC12).14(C3xC6) | 432,213 |
(C2xC12).15(C3xC6) = M4(2)x3- 1+2 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | 6 | (C2xC12).15(C3xC6) | 432,214 |
(C2xC12).16(C3xC6) = D4xC3xC18 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).16(C3xC6) | 432,403 |
(C2xC12).17(C3xC6) = C2xD4xHe3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).17(C3xC6) | 432,404 |
(C2xC12).18(C3xC6) = C2xD4x3- 1+2 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | | (C2xC12).18(C3xC6) | 432,405 |
(C2xC12).19(C3xC6) = Q8xC3xC18 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).19(C3xC6) | 432,406 |
(C2xC12).20(C3xC6) = C2xQ8xHe3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).20(C3xC6) | 432,407 |
(C2xC12).21(C3xC6) = C2xQ8x3- 1+2 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 144 | | (C2xC12).21(C3xC6) | 432,408 |
(C2xC12).22(C3xC6) = C4oD4xC3xC9 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).22(C3xC6) | 432,409 |
(C2xC12).23(C3xC6) = C4oD4xHe3 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | 6 | (C2xC12).23(C3xC6) | 432,410 |
(C2xC12).24(C3xC6) = C4oD4x3- 1+2 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 72 | 6 | (C2xC12).24(C3xC6) | 432,411 |
(C2xC12).25(C3xC6) = C4:C4xC33 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).25(C3xC6) | 432,514 |
(C2xC12).26(C3xC6) = M4(2)xC33 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 216 | | (C2xC12).26(C3xC6) | 432,516 |
(C2xC12).27(C3xC6) = Q8xC32xC6 | φ: C3xC6/C32 → C2 ⊆ Aut C2xC12 | 432 | | (C2xC12).27(C3xC6) | 432,732 |
(C2xC12).28(C3xC6) = C42xHe3 | central extension (φ=1) | 144 | | (C2xC12).28(C3xC6) | 432,201 |
(C2xC12).29(C3xC6) = C42x3- 1+2 | central extension (φ=1) | 144 | | (C2xC12).29(C3xC6) | 432,202 |
(C2xC12).30(C3xC6) = C2xC8xHe3 | central extension (φ=1) | 144 | | (C2xC12).30(C3xC6) | 432,210 |
(C2xC12).31(C3xC6) = C2xC8x3- 1+2 | central extension (φ=1) | 144 | | (C2xC12).31(C3xC6) | 432,211 |
(C2xC12).32(C3xC6) = C22xC4xHe3 | central extension (φ=1) | 144 | | (C2xC12).32(C3xC6) | 432,401 |
(C2xC12).33(C3xC6) = C22xC4x3- 1+2 | central extension (φ=1) | 144 | | (C2xC12).33(C3xC6) | 432,402 |