Extensions 1→N→G→Q→1 with N=Dic3×D9 and Q=C2

Direct product G=N×Q with N=Dic3×D9 and Q=C2
dρLabelID
C2×Dic3×D9144C2xDic3xD9432,304

Semidirect products G=N:Q with N=Dic3×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×D9)⋊1C2 = D18.D6φ: C2/C1C2 ⊆ Out Dic3×D9724(Dic3xD9):1C2432,281
(Dic3×D9)⋊2C2 = D18.4D6φ: C2/C1C2 ⊆ Out Dic3×D9724-(Dic3xD9):2C2432,310
(Dic3×D9)⋊3C2 = D9×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×D9724(Dic3xD9):3C2432,314
(Dic3×D9)⋊4C2 = D365S3φ: C2/C1C2 ⊆ Out Dic3×D91444-(Dic3xD9):4C2432,288
(Dic3×D9)⋊5C2 = D18.3D6φ: C2/C1C2 ⊆ Out Dic3×D9724(Dic3xD9):5C2432,305
(Dic3×D9)⋊6C2 = C4×S3×D9φ: trivial image724(Dic3xD9):6C2432,290

Non-split extensions G=N.Q with N=Dic3×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×D9).C2 = D9×Dic6φ: C2/C1C2 ⊆ Out Dic3×D91444-(Dic3xD9).C2432,280

׿
×
𝔽