metabelian, supersoluble, monomial
Aliases: D36⋊5S3, D6.6D18, D18.2D6, C36.35D6, C12.25D18, Dic3.10D18, C12.49S32, (C4×S3)⋊1D9, (S3×C36)⋊3C2, (C3×D36)⋊3C2, C4.13(S3×D9), D6⋊D9⋊2C2, (S3×C12).5S3, (Dic3×D9)⋊4C2, (S3×C6).27D6, (C3×C12).96D6, C9⋊2(D4⋊2S3), C12.D9⋊4C2, C6.9(C22×D9), (C3×C18).9C23, C18.9(C22×S3), (C3×C36).6C22, C3⋊3(D36⋊5C2), (C6×D9).2C22, (C3×Dic3).37D6, C9⋊Dic3.4C22, C3.1(D12⋊5S3), (S3×C18).10C22, C32.3(C4○D12), (C9×Dic3).11C22, C6.28(C2×S32), C2.13(C2×S3×D9), (C3×C9)⋊6(C4○D4), (C3×C6).77(C22×S3), SmallGroup(432,288)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D36⋊5S3
G = < a,b,c,d | a36=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a18b, dcd=c-1 >
Subgroups: 760 in 132 conjugacy classes, 41 normal (31 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C9, C9, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C4○D4, D9, C18, C18, C3×S3, C3×C6, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×C9, Dic9, C36, C36, D18, C2×C18, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C4○D12, D4⋊2S3, C3×D9, S3×C9, C3×C18, Dic18, C4×D9, D36, C9⋊D4, C2×C36, S3×Dic3, D6⋊S3, S3×C12, C3×D12, C32⋊4Q8, C9×Dic3, C9⋊Dic3, C3×C36, C6×D9, S3×C18, D36⋊5C2, D12⋊5S3, Dic3×D9, D6⋊D9, C3×D36, S3×C36, C12.D9, D36⋊5S3
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, D18, S32, C4○D12, D4⋊2S3, C22×D9, C2×S32, S3×D9, D36⋊5C2, D12⋊5S3, C2×S3×D9, D36⋊5S3
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 72)(18 71)(19 70)(20 69)(21 68)(22 67)(23 66)(24 65)(25 64)(26 63)(27 62)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 54)(36 53)(73 130)(74 129)(75 128)(76 127)(77 126)(78 125)(79 124)(80 123)(81 122)(82 121)(83 120)(84 119)(85 118)(86 117)(87 116)(88 115)(89 114)(90 113)(91 112)(92 111)(93 110)(94 109)(95 144)(96 143)(97 142)(98 141)(99 140)(100 139)(101 138)(102 137)(103 136)(104 135)(105 134)(106 133)(107 132)(108 131)
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 17 29)(6 18 30)(7 19 31)(8 20 32)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(37 61 49)(38 62 50)(39 63 51)(40 64 52)(41 65 53)(42 66 54)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)(73 97 85)(74 98 86)(75 99 87)(76 100 88)(77 101 89)(78 102 90)(79 103 91)(80 104 92)(81 105 93)(82 106 94)(83 107 95)(84 108 96)(109 121 133)(110 122 134)(111 123 135)(112 124 136)(113 125 137)(114 126 138)(115 127 139)(116 128 140)(117 129 141)(118 130 142)(119 131 143)(120 132 144)
(1 86)(2 87)(3 88)(4 89)(5 90)(6 91)(7 92)(8 93)(9 94)(10 95)(11 96)(12 97)(13 98)(14 99)(15 100)(16 101)(17 102)(18 103)(19 104)(20 105)(21 106)(22 107)(23 108)(24 73)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 81)(33 82)(34 83)(35 84)(36 85)(37 120)(38 121)(39 122)(40 123)(41 124)(42 125)(43 126)(44 127)(45 128)(46 129)(47 130)(48 131)(49 132)(50 133)(51 134)(52 135)(53 136)(54 137)(55 138)(56 139)(57 140)(58 141)(59 142)(60 143)(61 144)(62 109)(63 110)(64 111)(65 112)(66 113)(67 114)(68 115)(69 116)(70 117)(71 118)(72 119)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)(73,130)(74,129)(75,128)(76,127)(77,126)(78,125)(79,124)(80,123)(81,122)(82,121)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,144)(96,143)(97,142)(98,141)(99,140)(100,139)(101,138)(102,137)(103,136)(104,135)(105,134)(106,133)(107,132)(108,131), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(73,97,85)(74,98,86)(75,99,87)(76,100,88)(77,101,89)(78,102,90)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96)(109,121,133)(110,122,134)(111,123,135)(112,124,136)(113,125,137)(114,126,138)(115,127,139)(116,128,140)(117,129,141)(118,130,142)(119,131,143)(120,132,144), (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,81)(33,82)(34,83)(35,84)(36,85)(37,120)(38,121)(39,122)(40,123)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,140)(58,141)(59,142)(60,143)(61,144)(62,109)(63,110)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)(73,130)(74,129)(75,128)(76,127)(77,126)(78,125)(79,124)(80,123)(81,122)(82,121)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,144)(96,143)(97,142)(98,141)(99,140)(100,139)(101,138)(102,137)(103,136)(104,135)(105,134)(106,133)(107,132)(108,131), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(73,97,85)(74,98,86)(75,99,87)(76,100,88)(77,101,89)(78,102,90)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96)(109,121,133)(110,122,134)(111,123,135)(112,124,136)(113,125,137)(114,126,138)(115,127,139)(116,128,140)(117,129,141)(118,130,142)(119,131,143)(120,132,144), (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,81)(33,82)(34,83)(35,84)(36,85)(37,120)(38,121)(39,122)(40,123)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,140)(58,141)(59,142)(60,143)(61,144)(62,109)(63,110)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,72),(18,71),(19,70),(20,69),(21,68),(22,67),(23,66),(24,65),(25,64),(26,63),(27,62),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,54),(36,53),(73,130),(74,129),(75,128),(76,127),(77,126),(78,125),(79,124),(80,123),(81,122),(82,121),(83,120),(84,119),(85,118),(86,117),(87,116),(88,115),(89,114),(90,113),(91,112),(92,111),(93,110),(94,109),(95,144),(96,143),(97,142),(98,141),(99,140),(100,139),(101,138),(102,137),(103,136),(104,135),(105,134),(106,133),(107,132),(108,131)], [(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,17,29),(6,18,30),(7,19,31),(8,20,32),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(37,61,49),(38,62,50),(39,63,51),(40,64,52),(41,65,53),(42,66,54),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60),(73,97,85),(74,98,86),(75,99,87),(76,100,88),(77,101,89),(78,102,90),(79,103,91),(80,104,92),(81,105,93),(82,106,94),(83,107,95),(84,108,96),(109,121,133),(110,122,134),(111,123,135),(112,124,136),(113,125,137),(114,126,138),(115,127,139),(116,128,140),(117,129,141),(118,130,142),(119,131,143),(120,132,144)], [(1,86),(2,87),(3,88),(4,89),(5,90),(6,91),(7,92),(8,93),(9,94),(10,95),(11,96),(12,97),(13,98),(14,99),(15,100),(16,101),(17,102),(18,103),(19,104),(20,105),(21,106),(22,107),(23,108),(24,73),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,81),(33,82),(34,83),(35,84),(36,85),(37,120),(38,121),(39,122),(40,123),(41,124),(42,125),(43,126),(44,127),(45,128),(46,129),(47,130),(48,131),(49,132),(50,133),(51,134),(52,135),(53,136),(54,137),(55,138),(56,139),(57,140),(58,141),(59,142),(60,143),(61,144),(62,109),(63,110),(64,111),(65,112),(66,113),(67,114),(68,115),(69,116),(70,117),(71,118),(72,119)]])
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 18A | 18B | 18C | 18D | 18E | 18F | 18G | ··· | 18L | 36A | ··· | 36F | 36G | ··· | 36L | 36M | ··· | 36R |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | ··· | 18 | 36 | ··· | 36 | 36 | ··· | 36 | 36 | ··· | 36 |
size | 1 | 1 | 6 | 18 | 18 | 2 | 2 | 4 | 2 | 3 | 3 | 54 | 54 | 2 | 2 | 4 | 6 | 6 | 36 | 36 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D6 | D6 | D6 | D6 | D6 | C4○D4 | D9 | D18 | D18 | D18 | C4○D12 | D36⋊5C2 | S32 | D4⋊2S3 | C2×S32 | S3×D9 | D12⋊5S3 | C2×S3×D9 | D36⋊5S3 |
kernel | D36⋊5S3 | Dic3×D9 | D6⋊D9 | C3×D36 | S3×C36 | C12.D9 | D36 | S3×C12 | C36 | D18 | C3×Dic3 | C3×C12 | S3×C6 | C3×C9 | C4×S3 | Dic3 | C12 | D6 | C32 | C3 | C12 | C9 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 12 | 1 | 1 | 1 | 3 | 2 | 3 | 6 |
Matrix representation of D36⋊5S3 ►in GL6(𝔽37)
22 | 35 | 0 | 0 | 0 | 0 |
2 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 31 | 10 |
0 | 0 | 0 | 0 | 34 | 11 |
9 | 4 | 0 | 0 | 0 | 0 |
17 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 27 |
0 | 0 | 0 | 0 | 22 | 31 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 1 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
21 | 25 | 0 | 0 | 0 | 0 |
12 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(37))| [22,2,0,0,0,0,35,15,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,34,0,0,0,0,10,11],[9,17,0,0,0,0,4,28,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,6,22,0,0,0,0,27,31],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,36,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[21,12,0,0,0,0,25,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
D36⋊5S3 in GAP, Magma, Sage, TeX
D_{36}\rtimes_5S_3
% in TeX
G:=Group("D36:5S3");
// GroupNames label
G:=SmallGroup(432,288);
// by ID
G=gap.SmallGroup(432,288);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,135,58,3091,662,4037,7069]);
// Polycyclic
G:=Group<a,b,c,d|a^36=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations