Copied to
clipboard

G = D9×Dic6order 432 = 24·33

Direct product of D9 and Dic6

direct product, metabelian, supersoluble, monomial

Aliases: D9×Dic6, D18.8D6, C36.21D6, C12.34D18, Dic9.7D6, Dic3.1D18, (C3×D9)⋊Q8, C32(Q8×D9), C12.13S32, C4.5(S3×D9), (C4×D9).1S3, C91(C2×Dic6), (Dic3×D9).C2, (C9×Dic6)⋊3C2, (C12×D9).1C2, (C3×C12).89D6, C3.1(S3×Dic6), C12.D97C2, C6.1(C22×D9), C9⋊Dic63C2, C32.2(S3×Q8), (C3×C18).1C23, C18.1(C22×S3), (C3×Dic3).1D6, (C3×Dic6).5S3, (C6×D9).5C22, (C3×C36).24C22, C9⋊Dic3.1C22, (C3×Dic9).7C22, (C9×Dic3).1C22, (C3×C9)⋊1(C2×Q8), C2.5(C2×S3×D9), C6.20(C2×S32), (C3×C6).69(C22×S3), SmallGroup(432,280)

Series: Derived Chief Lower central Upper central

C1C3×C18 — D9×Dic6
C1C3C32C3×C9C3×C18C9×Dic3Dic3×D9 — D9×Dic6
C3×C9C3×C18 — D9×Dic6
C1C2C4

Generators and relations for D9×Dic6
 G = < a,b,c,d | a9=b2=c12=1, d2=c6, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 684 in 126 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, Q8, C9, C9, C32, Dic3, Dic3, C12, C12, D6, C2×C6, C2×Q8, D9, C18, C18, C3×S3, C3×C6, Dic6, Dic6, C4×S3, C2×Dic3, C2×C12, C3×Q8, C3×C9, Dic9, Dic9, C36, C36, D18, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×Dic6, S3×Q8, C3×D9, C3×C18, Dic18, C4×D9, C4×D9, Q8×C9, S3×Dic3, C322Q8, C3×Dic6, S3×C12, C324Q8, C3×Dic9, C9×Dic3, C9⋊Dic3, C3×C36, C6×D9, Q8×D9, S3×Dic6, C9⋊Dic6, Dic3×D9, C9×Dic6, C12×D9, C12.D9, D9×Dic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, D9, Dic6, C22×S3, D18, S32, C2×Dic6, S3×Q8, C22×D9, C2×S32, S3×D9, Q8×D9, S3×Dic6, C2×S3×D9, D9×Dic6

Smallest permutation representation of D9×Dic6
On 144 points
Generators in S144
(1 40 67 5 44 71 9 48 63)(2 41 68 6 45 72 10 37 64)(3 42 69 7 46 61 11 38 65)(4 43 70 8 47 62 12 39 66)(13 50 30 21 58 26 17 54 34)(14 51 31 22 59 27 18 55 35)(15 52 32 23 60 28 19 56 36)(16 53 33 24 49 29 20 57 25)(73 132 96 77 124 88 81 128 92)(74 121 85 78 125 89 82 129 93)(75 122 86 79 126 90 83 130 94)(76 123 87 80 127 91 84 131 95)(97 113 140 105 109 136 101 117 144)(98 114 141 106 110 137 102 118 133)(99 115 142 107 111 138 103 119 134)(100 116 143 108 112 139 104 120 135)
(1 138)(2 139)(3 140)(4 141)(5 142)(6 143)(7 144)(8 133)(9 134)(10 135)(11 136)(12 137)(13 84)(14 73)(15 74)(16 75)(17 76)(18 77)(19 78)(20 79)(21 80)(22 81)(23 82)(24 83)(25 122)(26 123)(27 124)(28 125)(29 126)(30 127)(31 128)(32 129)(33 130)(34 131)(35 132)(36 121)(37 120)(38 109)(39 110)(40 111)(41 112)(42 113)(43 114)(44 115)(45 116)(46 117)(47 118)(48 119)(49 90)(50 91)(51 92)(52 93)(53 94)(54 95)(55 96)(56 85)(57 86)(58 87)(59 88)(60 89)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 97)(70 98)(71 99)(72 100)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 24 7 18)(2 23 8 17)(3 22 9 16)(4 21 10 15)(5 20 11 14)(6 19 12 13)(25 65 31 71)(26 64 32 70)(27 63 33 69)(28 62 34 68)(29 61 35 67)(30 72 36 66)(37 52 43 58)(38 51 44 57)(39 50 45 56)(40 49 46 55)(41 60 47 54)(42 59 48 53)(73 142 79 136)(74 141 80 135)(75 140 81 134)(76 139 82 133)(77 138 83 144)(78 137 84 143)(85 110 91 116)(86 109 92 115)(87 120 93 114)(88 119 94 113)(89 118 95 112)(90 117 96 111)(97 124 103 130)(98 123 104 129)(99 122 105 128)(100 121 106 127)(101 132 107 126)(102 131 108 125)

G:=sub<Sym(144)| (1,40,67,5,44,71,9,48,63)(2,41,68,6,45,72,10,37,64)(3,42,69,7,46,61,11,38,65)(4,43,70,8,47,62,12,39,66)(13,50,30,21,58,26,17,54,34)(14,51,31,22,59,27,18,55,35)(15,52,32,23,60,28,19,56,36)(16,53,33,24,49,29,20,57,25)(73,132,96,77,124,88,81,128,92)(74,121,85,78,125,89,82,129,93)(75,122,86,79,126,90,83,130,94)(76,123,87,80,127,91,84,131,95)(97,113,140,105,109,136,101,117,144)(98,114,141,106,110,137,102,118,133)(99,115,142,107,111,138,103,119,134)(100,116,143,108,112,139,104,120,135), (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,133)(9,134)(10,135)(11,136)(12,137)(13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,121)(37,120)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,85)(57,86)(58,87)(59,88)(60,89)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,97)(70,98)(71,99)(72,100), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,24,7,18)(2,23,8,17)(3,22,9,16)(4,21,10,15)(5,20,11,14)(6,19,12,13)(25,65,31,71)(26,64,32,70)(27,63,33,69)(28,62,34,68)(29,61,35,67)(30,72,36,66)(37,52,43,58)(38,51,44,57)(39,50,45,56)(40,49,46,55)(41,60,47,54)(42,59,48,53)(73,142,79,136)(74,141,80,135)(75,140,81,134)(76,139,82,133)(77,138,83,144)(78,137,84,143)(85,110,91,116)(86,109,92,115)(87,120,93,114)(88,119,94,113)(89,118,95,112)(90,117,96,111)(97,124,103,130)(98,123,104,129)(99,122,105,128)(100,121,106,127)(101,132,107,126)(102,131,108,125)>;

G:=Group( (1,40,67,5,44,71,9,48,63)(2,41,68,6,45,72,10,37,64)(3,42,69,7,46,61,11,38,65)(4,43,70,8,47,62,12,39,66)(13,50,30,21,58,26,17,54,34)(14,51,31,22,59,27,18,55,35)(15,52,32,23,60,28,19,56,36)(16,53,33,24,49,29,20,57,25)(73,132,96,77,124,88,81,128,92)(74,121,85,78,125,89,82,129,93)(75,122,86,79,126,90,83,130,94)(76,123,87,80,127,91,84,131,95)(97,113,140,105,109,136,101,117,144)(98,114,141,106,110,137,102,118,133)(99,115,142,107,111,138,103,119,134)(100,116,143,108,112,139,104,120,135), (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,133)(9,134)(10,135)(11,136)(12,137)(13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,121)(37,120)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,85)(57,86)(58,87)(59,88)(60,89)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,97)(70,98)(71,99)(72,100), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,24,7,18)(2,23,8,17)(3,22,9,16)(4,21,10,15)(5,20,11,14)(6,19,12,13)(25,65,31,71)(26,64,32,70)(27,63,33,69)(28,62,34,68)(29,61,35,67)(30,72,36,66)(37,52,43,58)(38,51,44,57)(39,50,45,56)(40,49,46,55)(41,60,47,54)(42,59,48,53)(73,142,79,136)(74,141,80,135)(75,140,81,134)(76,139,82,133)(77,138,83,144)(78,137,84,143)(85,110,91,116)(86,109,92,115)(87,120,93,114)(88,119,94,113)(89,118,95,112)(90,117,96,111)(97,124,103,130)(98,123,104,129)(99,122,105,128)(100,121,106,127)(101,132,107,126)(102,131,108,125) );

G=PermutationGroup([[(1,40,67,5,44,71,9,48,63),(2,41,68,6,45,72,10,37,64),(3,42,69,7,46,61,11,38,65),(4,43,70,8,47,62,12,39,66),(13,50,30,21,58,26,17,54,34),(14,51,31,22,59,27,18,55,35),(15,52,32,23,60,28,19,56,36),(16,53,33,24,49,29,20,57,25),(73,132,96,77,124,88,81,128,92),(74,121,85,78,125,89,82,129,93),(75,122,86,79,126,90,83,130,94),(76,123,87,80,127,91,84,131,95),(97,113,140,105,109,136,101,117,144),(98,114,141,106,110,137,102,118,133),(99,115,142,107,111,138,103,119,134),(100,116,143,108,112,139,104,120,135)], [(1,138),(2,139),(3,140),(4,141),(5,142),(6,143),(7,144),(8,133),(9,134),(10,135),(11,136),(12,137),(13,84),(14,73),(15,74),(16,75),(17,76),(18,77),(19,78),(20,79),(21,80),(22,81),(23,82),(24,83),(25,122),(26,123),(27,124),(28,125),(29,126),(30,127),(31,128),(32,129),(33,130),(34,131),(35,132),(36,121),(37,120),(38,109),(39,110),(40,111),(41,112),(42,113),(43,114),(44,115),(45,116),(46,117),(47,118),(48,119),(49,90),(50,91),(51,92),(52,93),(53,94),(54,95),(55,96),(56,85),(57,86),(58,87),(59,88),(60,89),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,97),(70,98),(71,99),(72,100)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,24,7,18),(2,23,8,17),(3,22,9,16),(4,21,10,15),(5,20,11,14),(6,19,12,13),(25,65,31,71),(26,64,32,70),(27,63,33,69),(28,62,34,68),(29,61,35,67),(30,72,36,66),(37,52,43,58),(38,51,44,57),(39,50,45,56),(40,49,46,55),(41,60,47,54),(42,59,48,53),(73,142,79,136),(74,141,80,135),(75,140,81,134),(76,139,82,133),(77,138,83,144),(78,137,84,143),(85,110,91,116),(86,109,92,115),(87,120,93,114),(88,119,94,113),(89,118,95,112),(90,117,96,111),(97,124,103,130),(98,123,104,129),(99,122,105,128),(100,121,106,127),(101,132,107,126),(102,131,108,125)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A6B6C6D6E9A9B9C9D9E9F12A12B12C12D12E12F12G12H12I18A18B18C18D18E18F36A···36I36J···36O
order12223334444446666699999912121212121212121218181818181836···3636···36
size1199224266185454224181822244422444121218182224444···412···12

54 irreducible representations

dim11111122222222222244444444
type++++++++-++++++-+++-++--+-
imageC1C2C2C2C2C2S3S3Q8D6D6D6D6D6D9Dic6D18D18S32S3×Q8C2×S32S3×D9Q8×D9S3×Dic6C2×S3×D9D9×Dic6
kernelD9×Dic6C9⋊Dic6Dic3×D9C9×Dic6C12×D9C12.D9C4×D9C3×Dic6C3×D9Dic9C36D18C3×Dic3C3×C12Dic6D9Dic3C12C12C32C6C4C3C3C2C1
# reps12211111211121346311133236

Matrix representation of D9×Dic6 in GL4(𝔽37) generated by

1000
0100
002631
00620
,
36000
03600
003117
00116
,
32500
322700
00360
00036
,
351100
13200
0010
0001
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,26,6,0,0,31,20],[36,0,0,0,0,36,0,0,0,0,31,11,0,0,17,6],[32,32,0,0,5,27,0,0,0,0,36,0,0,0,0,36],[35,13,0,0,11,2,0,0,0,0,1,0,0,0,0,1] >;

D9×Dic6 in GAP, Magma, Sage, TeX

D_9\times {\rm Dic}_6
% in TeX

G:=Group("D9xDic6");
// GroupNames label

G:=SmallGroup(432,280);
// by ID

G=gap.SmallGroup(432,280);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,254,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^12=1,d^2=c^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽