Copied to
clipboard

G = C2×Dic3×D9order 432 = 24·33

Direct product of C2, Dic3 and D9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×Dic3×D9, D18.11D6, C62.61D6, C63(C4×D9), (C6×D9)⋊3C4, C181(C2×Dic3), (C2×C6).16D18, (C2×C18).16D6, C6.5(S3×Dic3), (Dic3×C18)⋊7C2, C9⋊Dic35C22, (C22×D9).2S3, C91(C22×Dic3), C22.12(S3×D9), C6.16(C22×D9), (C6×C18).10C22, (C3×C18).16C23, C18.16(C22×S3), (C3×Dic3).40D6, (C6×Dic3).15S3, (C9×Dic3)⋊6C22, (C6×D9).11C22, C34(C2×C4×D9), C2.2(C2×S3×D9), C6.35(C2×S32), (C2×C6).22S32, (C2×C6×D9).3C2, (C3×C18)⋊1(C2×C4), (C3×D9)⋊2(C2×C4), (C3×C9)⋊2(C22×C4), C32.3(S3×C2×C4), C3.1(C2×S3×Dic3), (C3×C6).42(C4×S3), (C2×C9⋊Dic3)⋊5C2, (C3×C6).84(C22×S3), SmallGroup(432,304)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C2×Dic3×D9
C1C3C32C3×C9C3×C18C9×Dic3Dic3×D9 — C2×Dic3×D9
C3×C9 — C2×Dic3×D9
C1C22

Generators and relations for C2×Dic3×D9
 G = < a,b,c,d,e | a2=b6=d9=e2=1, c2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 860 in 178 conjugacy classes, 69 normal (25 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, C23, C9, C9, C32, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C22×C4, D9, C18, C18, C18, C3×S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C22×S3, C22×C6, C3×C9, Dic9, C36, D18, C2×C18, C2×C18, C3×Dic3, C3⋊Dic3, S3×C6, C62, S3×C2×C4, C22×Dic3, C3×D9, C3×C18, C3×C18, C4×D9, C2×Dic9, C2×C36, C22×D9, S3×Dic3, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C9×Dic3, C9⋊Dic3, C6×D9, C6×C18, C2×C4×D9, C2×S3×Dic3, Dic3×D9, Dic3×C18, C2×C9⋊Dic3, C2×C6×D9, C2×Dic3×D9
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, D9, C4×S3, C2×Dic3, C22×S3, D18, S32, S3×C2×C4, C22×Dic3, C4×D9, C22×D9, S3×Dic3, C2×S32, S3×D9, C2×C4×D9, C2×S3×Dic3, Dic3×D9, C2×S3×D9, C2×Dic3×D9

Smallest permutation representation of C2×Dic3×D9
On 144 points
Generators in S144
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 17 7 14 4 11)(2 18 8 15 5 12)(3 10 9 16 6 13)(19 31 25 28 22 34)(20 32 26 29 23 35)(21 33 27 30 24 36)(37 52 40 46 43 49)(38 53 41 47 44 50)(39 54 42 48 45 51)(55 70 58 64 61 67)(56 71 59 65 62 68)(57 72 60 66 63 69)(73 88 76 82 79 85)(74 89 77 83 80 86)(75 90 78 84 81 87)(91 106 94 100 97 103)(92 107 95 101 98 104)(93 108 96 102 99 105)(109 121 115 118 112 124)(110 122 116 119 113 125)(111 123 117 120 114 126)(127 139 133 136 130 142)(128 140 134 137 131 143)(129 141 135 138 132 144)
(1 86 14 77)(2 87 15 78)(3 88 16 79)(4 89 17 80)(5 90 18 81)(6 82 10 73)(7 83 11 74)(8 84 12 75)(9 85 13 76)(19 100 28 91)(20 101 29 92)(21 102 30 93)(22 103 31 94)(23 104 32 95)(24 105 33 96)(25 106 34 97)(26 107 35 98)(27 108 36 99)(37 118 46 109)(38 119 47 110)(39 120 48 111)(40 121 49 112)(41 122 50 113)(42 123 51 114)(43 124 52 115)(44 125 53 116)(45 126 54 117)(55 136 64 127)(56 137 65 128)(57 138 66 129)(58 139 67 130)(59 140 68 131)(60 141 69 132)(61 142 70 133)(62 143 71 134)(63 144 72 135)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 48)(2 47)(3 46)(4 54)(5 53)(6 52)(7 51)(8 50)(9 49)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 45)(18 44)(19 70)(20 69)(21 68)(22 67)(23 66)(24 65)(25 64)(26 72)(27 71)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 63)(36 62)(73 124)(74 123)(75 122)(76 121)(77 120)(78 119)(79 118)(80 126)(81 125)(82 115)(83 114)(84 113)(85 112)(86 111)(87 110)(88 109)(89 117)(90 116)(91 142)(92 141)(93 140)(94 139)(95 138)(96 137)(97 136)(98 144)(99 143)(100 133)(101 132)(102 131)(103 130)(104 129)(105 128)(106 127)(107 135)(108 134)

G:=sub<Sym(144)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,17,7,14,4,11)(2,18,8,15,5,12)(3,10,9,16,6,13)(19,31,25,28,22,34)(20,32,26,29,23,35)(21,33,27,30,24,36)(37,52,40,46,43,49)(38,53,41,47,44,50)(39,54,42,48,45,51)(55,70,58,64,61,67)(56,71,59,65,62,68)(57,72,60,66,63,69)(73,88,76,82,79,85)(74,89,77,83,80,86)(75,90,78,84,81,87)(91,106,94,100,97,103)(92,107,95,101,98,104)(93,108,96,102,99,105)(109,121,115,118,112,124)(110,122,116,119,113,125)(111,123,117,120,114,126)(127,139,133,136,130,142)(128,140,134,137,131,143)(129,141,135,138,132,144), (1,86,14,77)(2,87,15,78)(3,88,16,79)(4,89,17,80)(5,90,18,81)(6,82,10,73)(7,83,11,74)(8,84,12,75)(9,85,13,76)(19,100,28,91)(20,101,29,92)(21,102,30,93)(22,103,31,94)(23,104,32,95)(24,105,33,96)(25,106,34,97)(26,107,35,98)(27,108,36,99)(37,118,46,109)(38,119,47,110)(39,120,48,111)(40,121,49,112)(41,122,50,113)(42,123,51,114)(43,124,52,115)(44,125,53,116)(45,126,54,117)(55,136,64,127)(56,137,65,128)(57,138,66,129)(58,139,67,130)(59,140,68,131)(60,141,69,132)(61,142,70,133)(62,143,71,134)(63,144,72,135), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,48)(2,47)(3,46)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,72)(27,71)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62)(73,124)(74,123)(75,122)(76,121)(77,120)(78,119)(79,118)(80,126)(81,125)(82,115)(83,114)(84,113)(85,112)(86,111)(87,110)(88,109)(89,117)(90,116)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,136)(98,144)(99,143)(100,133)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,135)(108,134)>;

G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,17,7,14,4,11)(2,18,8,15,5,12)(3,10,9,16,6,13)(19,31,25,28,22,34)(20,32,26,29,23,35)(21,33,27,30,24,36)(37,52,40,46,43,49)(38,53,41,47,44,50)(39,54,42,48,45,51)(55,70,58,64,61,67)(56,71,59,65,62,68)(57,72,60,66,63,69)(73,88,76,82,79,85)(74,89,77,83,80,86)(75,90,78,84,81,87)(91,106,94,100,97,103)(92,107,95,101,98,104)(93,108,96,102,99,105)(109,121,115,118,112,124)(110,122,116,119,113,125)(111,123,117,120,114,126)(127,139,133,136,130,142)(128,140,134,137,131,143)(129,141,135,138,132,144), (1,86,14,77)(2,87,15,78)(3,88,16,79)(4,89,17,80)(5,90,18,81)(6,82,10,73)(7,83,11,74)(8,84,12,75)(9,85,13,76)(19,100,28,91)(20,101,29,92)(21,102,30,93)(22,103,31,94)(23,104,32,95)(24,105,33,96)(25,106,34,97)(26,107,35,98)(27,108,36,99)(37,118,46,109)(38,119,47,110)(39,120,48,111)(40,121,49,112)(41,122,50,113)(42,123,51,114)(43,124,52,115)(44,125,53,116)(45,126,54,117)(55,136,64,127)(56,137,65,128)(57,138,66,129)(58,139,67,130)(59,140,68,131)(60,141,69,132)(61,142,70,133)(62,143,71,134)(63,144,72,135), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,48)(2,47)(3,46)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,72)(27,71)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62)(73,124)(74,123)(75,122)(76,121)(77,120)(78,119)(79,118)(80,126)(81,125)(82,115)(83,114)(84,113)(85,112)(86,111)(87,110)(88,109)(89,117)(90,116)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,136)(98,144)(99,143)(100,133)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,135)(108,134) );

G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,17,7,14,4,11),(2,18,8,15,5,12),(3,10,9,16,6,13),(19,31,25,28,22,34),(20,32,26,29,23,35),(21,33,27,30,24,36),(37,52,40,46,43,49),(38,53,41,47,44,50),(39,54,42,48,45,51),(55,70,58,64,61,67),(56,71,59,65,62,68),(57,72,60,66,63,69),(73,88,76,82,79,85),(74,89,77,83,80,86),(75,90,78,84,81,87),(91,106,94,100,97,103),(92,107,95,101,98,104),(93,108,96,102,99,105),(109,121,115,118,112,124),(110,122,116,119,113,125),(111,123,117,120,114,126),(127,139,133,136,130,142),(128,140,134,137,131,143),(129,141,135,138,132,144)], [(1,86,14,77),(2,87,15,78),(3,88,16,79),(4,89,17,80),(5,90,18,81),(6,82,10,73),(7,83,11,74),(8,84,12,75),(9,85,13,76),(19,100,28,91),(20,101,29,92),(21,102,30,93),(22,103,31,94),(23,104,32,95),(24,105,33,96),(25,106,34,97),(26,107,35,98),(27,108,36,99),(37,118,46,109),(38,119,47,110),(39,120,48,111),(40,121,49,112),(41,122,50,113),(42,123,51,114),(43,124,52,115),(44,125,53,116),(45,126,54,117),(55,136,64,127),(56,137,65,128),(57,138,66,129),(58,139,67,130),(59,140,68,131),(60,141,69,132),(61,142,70,133),(62,143,71,134),(63,144,72,135)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,48),(2,47),(3,46),(4,54),(5,53),(6,52),(7,51),(8,50),(9,49),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,45),(18,44),(19,70),(20,69),(21,68),(22,67),(23,66),(24,65),(25,64),(26,72),(27,71),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,63),(36,62),(73,124),(74,123),(75,122),(76,121),(77,120),(78,119),(79,118),(80,126),(81,125),(82,115),(83,114),(84,113),(85,112),(86,111),(87,110),(88,109),(89,117),(90,116),(91,142),(92,141),(93,140),(94,139),(95,138),(96,137),(97,136),(98,144),(99,143),(100,133),(101,132),(102,131),(103,130),(104,129),(105,128),(106,127),(107,135),(108,134)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I6J6K6L6M9A9B9C9D9E9F12A12B12C12D18A···18I18J···18R36A···36L
order12222222333444444446···666666669999991212121218···1818···1836···36
size111199992243333272727272···24441818181822244466662···24···46···6

72 irreducible representations

dim111111222222222222444444
type+++++++-++++++++-++-+
imageC1C2C2C2C2C4S3S3Dic3D6D6D6D6D9C4×S3D18D18C4×D9S32S3×Dic3C2×S32S3×D9Dic3×D9C2×S3×D9
kernelC2×Dic3×D9Dic3×D9Dic3×C18C2×C9⋊Dic3C2×C6×D9C6×D9C22×D9C6×Dic3D18D18C2×C18C3×Dic3C62C2×Dic3C3×C6Dic3C2×C6C6C2×C6C6C6C22C2C2
# reps1411181142121346312121363

Matrix representation of C2×Dic3×D9 in GL6(𝔽37)

100000
010000
0036000
0003600
000010
000001
,
010000
3610000
0003600
0013600
000010
000001
,
0310000
3100000
0003600
0036000
0000360
0000036
,
100000
010000
001000
000100
00001120
00001731
,
3600000
0360000
001000
000100
0000611
00001731

G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,36,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,36,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,31,0,0,0,0,31,0,0,0,0,0,0,0,0,36,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,17,0,0,0,0,20,31],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,17,0,0,0,0,11,31] >;

C2×Dic3×D9 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_3\times D_9
% in TeX

G:=Group("C2xDic3xD9");
// GroupNames label

G:=SmallGroup(432,304);
// by ID

G=gap.SmallGroup(432,304);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=d^9=e^2=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽