Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3.A4

Direct product G=N×Q with N=C3 and Q=Dic3.A4
dρLabelID
C3×Dic3.A4484C3xDic3.A4432,622

Semidirect products G=N:Q with N=C3 and Q=Dic3.A4
extensionφ:Q→Aut NdρLabelID
C3⋊(Dic3.A4) = C3⋊Dic3.2A4φ: Dic3.A4/C3×SL2(𝔽3)C2 ⊆ Aut C3144C3:(Dic3.A4)432,625

Non-split extensions G=N.Q with N=C3 and Q=Dic3.A4
extensionφ:Q→Aut NdρLabelID
C3.1(Dic3.A4) = Dic9.A4φ: Dic3.A4/C3×SL2(𝔽3)C2 ⊆ Aut C314412+C3.1(Dic3.A4)432,261
C3.2(Dic3.A4) = Dic9.2A4φ: Dic3.A4/C3×SL2(𝔽3)C2 ⊆ Aut C31444+C3.2(Dic3.A4)432,262
C3.3(Dic3.A4) = C6.(S3×A4)φ: Dic3.A4/C3×SL2(𝔽3)C2 ⊆ Aut C37212+C3.3(Dic3.A4)432,269
C3.4(Dic3.A4) = Q8⋊C93S3central extension (φ=1)1444C3.4(Dic3.A4)432,267

׿
×
𝔽