Aliases: Dic9.2A4, SL2(𝔽3)⋊2D9, C6.2(S3×A4), C2.2(A4×D9), C9⋊3(C4.A4), C18.7(C2×A4), (Q8×C9).3C6, Q8.2(C3×D9), Q8⋊3D9⋊3C3, (C9×SL2(𝔽3))⋊2C2, C3.2(Dic3.A4), (C3×SL2(𝔽3)).6S3, (C3×Q8).12(C3×S3), SmallGroup(432,262)
Series: Derived ►Chief ►Lower central ►Upper central
Q8×C9 — Dic9.2A4 |
Generators and relations for Dic9.2A4
G = < a,b,c,d,e | a18=e3=1, b2=c2=d2=a9, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a9c, ece-1=a9cd, ede-1=c >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 88 10 79)(2 87 11 78)(3 86 12 77)(4 85 13 76)(5 84 14 75)(6 83 15 74)(7 82 16 73)(8 81 17 90)(9 80 18 89)(19 107 28 98)(20 106 29 97)(21 105 30 96)(22 104 31 95)(23 103 32 94)(24 102 33 93)(25 101 34 92)(26 100 35 91)(27 99 36 108)(37 122 46 113)(38 121 47 112)(39 120 48 111)(40 119 49 110)(41 118 50 109)(42 117 51 126)(43 116 52 125)(44 115 53 124)(45 114 54 123)(55 144 64 135)(56 143 65 134)(57 142 66 133)(58 141 67 132)(59 140 68 131)(60 139 69 130)(61 138 70 129)(62 137 71 128)(63 136 72 127)
(1 35 10 26)(2 36 11 27)(3 19 12 28)(4 20 13 29)(5 21 14 30)(6 22 15 31)(7 23 16 32)(8 24 17 33)(9 25 18 34)(37 62 46 71)(38 63 47 72)(39 64 48 55)(40 65 49 56)(41 66 50 57)(42 67 51 58)(43 68 52 59)(44 69 53 60)(45 70 54 61)(73 94 82 103)(74 95 83 104)(75 96 84 105)(76 97 85 106)(77 98 86 107)(78 99 87 108)(79 100 88 91)(80 101 89 92)(81 102 90 93)(109 142 118 133)(110 143 119 134)(111 144 120 135)(112 127 121 136)(113 128 122 137)(114 129 123 138)(115 130 124 139)(116 131 125 140)(117 132 126 141)
(1 50 10 41)(2 51 11 42)(3 52 12 43)(4 53 13 44)(5 54 14 45)(6 37 15 46)(7 38 16 47)(8 39 17 48)(9 40 18 49)(19 68 28 59)(20 69 29 60)(21 70 30 61)(22 71 31 62)(23 72 32 63)(24 55 33 64)(25 56 34 65)(26 57 35 66)(27 58 36 67)(73 112 82 121)(74 113 83 122)(75 114 84 123)(76 115 85 124)(77 116 86 125)(78 117 87 126)(79 118 88 109)(80 119 89 110)(81 120 90 111)(91 133 100 142)(92 134 101 143)(93 135 102 144)(94 136 103 127)(95 137 104 128)(96 138 105 129)(97 139 106 130)(98 140 107 131)(99 141 108 132)
(19 52 59)(20 53 60)(21 54 61)(22 37 62)(23 38 63)(24 39 64)(25 40 65)(26 41 66)(27 42 67)(28 43 68)(29 44 69)(30 45 70)(31 46 71)(32 47 72)(33 48 55)(34 49 56)(35 50 57)(36 51 58)(91 109 142)(92 110 143)(93 111 144)(94 112 127)(95 113 128)(96 114 129)(97 115 130)(98 116 131)(99 117 132)(100 118 133)(101 119 134)(102 120 135)(103 121 136)(104 122 137)(105 123 138)(106 124 139)(107 125 140)(108 126 141)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,88,10,79)(2,87,11,78)(3,86,12,77)(4,85,13,76)(5,84,14,75)(6,83,15,74)(7,82,16,73)(8,81,17,90)(9,80,18,89)(19,107,28,98)(20,106,29,97)(21,105,30,96)(22,104,31,95)(23,103,32,94)(24,102,33,93)(25,101,34,92)(26,100,35,91)(27,99,36,108)(37,122,46,113)(38,121,47,112)(39,120,48,111)(40,119,49,110)(41,118,50,109)(42,117,51,126)(43,116,52,125)(44,115,53,124)(45,114,54,123)(55,144,64,135)(56,143,65,134)(57,142,66,133)(58,141,67,132)(59,140,68,131)(60,139,69,130)(61,138,70,129)(62,137,71,128)(63,136,72,127), (1,35,10,26)(2,36,11,27)(3,19,12,28)(4,20,13,29)(5,21,14,30)(6,22,15,31)(7,23,16,32)(8,24,17,33)(9,25,18,34)(37,62,46,71)(38,63,47,72)(39,64,48,55)(40,65,49,56)(41,66,50,57)(42,67,51,58)(43,68,52,59)(44,69,53,60)(45,70,54,61)(73,94,82,103)(74,95,83,104)(75,96,84,105)(76,97,85,106)(77,98,86,107)(78,99,87,108)(79,100,88,91)(80,101,89,92)(81,102,90,93)(109,142,118,133)(110,143,119,134)(111,144,120,135)(112,127,121,136)(113,128,122,137)(114,129,123,138)(115,130,124,139)(116,131,125,140)(117,132,126,141), (1,50,10,41)(2,51,11,42)(3,52,12,43)(4,53,13,44)(5,54,14,45)(6,37,15,46)(7,38,16,47)(8,39,17,48)(9,40,18,49)(19,68,28,59)(20,69,29,60)(21,70,30,61)(22,71,31,62)(23,72,32,63)(24,55,33,64)(25,56,34,65)(26,57,35,66)(27,58,36,67)(73,112,82,121)(74,113,83,122)(75,114,84,123)(76,115,85,124)(77,116,86,125)(78,117,87,126)(79,118,88,109)(80,119,89,110)(81,120,90,111)(91,133,100,142)(92,134,101,143)(93,135,102,144)(94,136,103,127)(95,137,104,128)(96,138,105,129)(97,139,106,130)(98,140,107,131)(99,141,108,132), (19,52,59)(20,53,60)(21,54,61)(22,37,62)(23,38,63)(24,39,64)(25,40,65)(26,41,66)(27,42,67)(28,43,68)(29,44,69)(30,45,70)(31,46,71)(32,47,72)(33,48,55)(34,49,56)(35,50,57)(36,51,58)(91,109,142)(92,110,143)(93,111,144)(94,112,127)(95,113,128)(96,114,129)(97,115,130)(98,116,131)(99,117,132)(100,118,133)(101,119,134)(102,120,135)(103,121,136)(104,122,137)(105,123,138)(106,124,139)(107,125,140)(108,126,141)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,88,10,79)(2,87,11,78)(3,86,12,77)(4,85,13,76)(5,84,14,75)(6,83,15,74)(7,82,16,73)(8,81,17,90)(9,80,18,89)(19,107,28,98)(20,106,29,97)(21,105,30,96)(22,104,31,95)(23,103,32,94)(24,102,33,93)(25,101,34,92)(26,100,35,91)(27,99,36,108)(37,122,46,113)(38,121,47,112)(39,120,48,111)(40,119,49,110)(41,118,50,109)(42,117,51,126)(43,116,52,125)(44,115,53,124)(45,114,54,123)(55,144,64,135)(56,143,65,134)(57,142,66,133)(58,141,67,132)(59,140,68,131)(60,139,69,130)(61,138,70,129)(62,137,71,128)(63,136,72,127), (1,35,10,26)(2,36,11,27)(3,19,12,28)(4,20,13,29)(5,21,14,30)(6,22,15,31)(7,23,16,32)(8,24,17,33)(9,25,18,34)(37,62,46,71)(38,63,47,72)(39,64,48,55)(40,65,49,56)(41,66,50,57)(42,67,51,58)(43,68,52,59)(44,69,53,60)(45,70,54,61)(73,94,82,103)(74,95,83,104)(75,96,84,105)(76,97,85,106)(77,98,86,107)(78,99,87,108)(79,100,88,91)(80,101,89,92)(81,102,90,93)(109,142,118,133)(110,143,119,134)(111,144,120,135)(112,127,121,136)(113,128,122,137)(114,129,123,138)(115,130,124,139)(116,131,125,140)(117,132,126,141), (1,50,10,41)(2,51,11,42)(3,52,12,43)(4,53,13,44)(5,54,14,45)(6,37,15,46)(7,38,16,47)(8,39,17,48)(9,40,18,49)(19,68,28,59)(20,69,29,60)(21,70,30,61)(22,71,31,62)(23,72,32,63)(24,55,33,64)(25,56,34,65)(26,57,35,66)(27,58,36,67)(73,112,82,121)(74,113,83,122)(75,114,84,123)(76,115,85,124)(77,116,86,125)(78,117,87,126)(79,118,88,109)(80,119,89,110)(81,120,90,111)(91,133,100,142)(92,134,101,143)(93,135,102,144)(94,136,103,127)(95,137,104,128)(96,138,105,129)(97,139,106,130)(98,140,107,131)(99,141,108,132), (19,52,59)(20,53,60)(21,54,61)(22,37,62)(23,38,63)(24,39,64)(25,40,65)(26,41,66)(27,42,67)(28,43,68)(29,44,69)(30,45,70)(31,46,71)(32,47,72)(33,48,55)(34,49,56)(35,50,57)(36,51,58)(91,109,142)(92,110,143)(93,111,144)(94,112,127)(95,113,128)(96,114,129)(97,115,130)(98,116,131)(99,117,132)(100,118,133)(101,119,134)(102,120,135)(103,121,136)(104,122,137)(105,123,138)(106,124,139)(107,125,140)(108,126,141) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,88,10,79),(2,87,11,78),(3,86,12,77),(4,85,13,76),(5,84,14,75),(6,83,15,74),(7,82,16,73),(8,81,17,90),(9,80,18,89),(19,107,28,98),(20,106,29,97),(21,105,30,96),(22,104,31,95),(23,103,32,94),(24,102,33,93),(25,101,34,92),(26,100,35,91),(27,99,36,108),(37,122,46,113),(38,121,47,112),(39,120,48,111),(40,119,49,110),(41,118,50,109),(42,117,51,126),(43,116,52,125),(44,115,53,124),(45,114,54,123),(55,144,64,135),(56,143,65,134),(57,142,66,133),(58,141,67,132),(59,140,68,131),(60,139,69,130),(61,138,70,129),(62,137,71,128),(63,136,72,127)], [(1,35,10,26),(2,36,11,27),(3,19,12,28),(4,20,13,29),(5,21,14,30),(6,22,15,31),(7,23,16,32),(8,24,17,33),(9,25,18,34),(37,62,46,71),(38,63,47,72),(39,64,48,55),(40,65,49,56),(41,66,50,57),(42,67,51,58),(43,68,52,59),(44,69,53,60),(45,70,54,61),(73,94,82,103),(74,95,83,104),(75,96,84,105),(76,97,85,106),(77,98,86,107),(78,99,87,108),(79,100,88,91),(80,101,89,92),(81,102,90,93),(109,142,118,133),(110,143,119,134),(111,144,120,135),(112,127,121,136),(113,128,122,137),(114,129,123,138),(115,130,124,139),(116,131,125,140),(117,132,126,141)], [(1,50,10,41),(2,51,11,42),(3,52,12,43),(4,53,13,44),(5,54,14,45),(6,37,15,46),(7,38,16,47),(8,39,17,48),(9,40,18,49),(19,68,28,59),(20,69,29,60),(21,70,30,61),(22,71,31,62),(23,72,32,63),(24,55,33,64),(25,56,34,65),(26,57,35,66),(27,58,36,67),(73,112,82,121),(74,113,83,122),(75,114,84,123),(76,115,85,124),(77,116,86,125),(78,117,87,126),(79,118,88,109),(80,119,89,110),(81,120,90,111),(91,133,100,142),(92,134,101,143),(93,135,102,144),(94,136,103,127),(95,137,104,128),(96,138,105,129),(97,139,106,130),(98,140,107,131),(99,141,108,132)], [(19,52,59),(20,53,60),(21,54,61),(22,37,62),(23,38,63),(24,39,64),(25,40,65),(26,41,66),(27,42,67),(28,43,68),(29,44,69),(30,45,70),(31,46,71),(32,47,72),(33,48,55),(34,49,56),(35,50,57),(36,51,58),(91,109,142),(92,110,143),(93,111,144),(94,112,127),(95,113,128),(96,114,129),(97,115,130),(98,116,131),(99,117,132),(100,118,133),(101,119,134),(102,120,135),(103,121,136),(104,122,137),(105,123,138),(106,124,139),(107,125,140),(108,126,141)]])
42 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 9A | 9B | 9C | 9D | ··· | 9I | 12A | 12B | 12C | 12D | 12E | 18A | 18B | 18C | 18D | ··· | 18I | 36A | 36B | 36C |
order | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | ··· | 18 | 36 | 36 | 36 |
size | 1 | 1 | 54 | 2 | 4 | 4 | 8 | 8 | 6 | 9 | 9 | 2 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 8 | ··· | 8 | 12 | 36 | 36 | 36 | 36 | 2 | 2 | 2 | 8 | ··· | 8 | 12 | 12 | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C3 | C6 | S3 | D9 | C3×S3 | C4.A4 | C3×D9 | A4 | C2×A4 | Dic3.A4 | Dic3.A4 | Dic9.2A4 | Dic9.2A4 | S3×A4 | A4×D9 |
kernel | Dic9.2A4 | C9×SL2(𝔽3) | Q8⋊3D9 | Q8×C9 | C3×SL2(𝔽3) | SL2(𝔽3) | C3×Q8 | C9 | Q8 | Dic9 | C18 | C3 | C3 | C1 | C1 | C6 | C2 |
# reps | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 6 | 6 | 1 | 1 | 1 | 2 | 3 | 6 | 1 | 3 |
Matrix representation of Dic9.2A4 ►in GL4(𝔽37) generated by
36 | 0 | 0 | 0 |
0 | 36 | 0 | 0 |
0 | 0 | 33 | 0 |
0 | 0 | 3 | 9 |
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 5 | 34 |
0 | 0 | 8 | 32 |
0 | 1 | 0 | 0 |
36 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
11 | 10 | 0 | 0 |
10 | 26 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
10 | 26 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(37))| [36,0,0,0,0,36,0,0,0,0,33,3,0,0,0,9],[6,0,0,0,0,6,0,0,0,0,5,8,0,0,34,32],[0,36,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[11,10,0,0,10,26,0,0,0,0,1,0,0,0,0,1],[1,10,0,0,0,26,0,0,0,0,1,0,0,0,0,1] >;
Dic9.2A4 in GAP, Magma, Sage, TeX
{\rm Dic}_9._2A_4
% in TeX
G:=Group("Dic9.2A4");
// GroupNames label
G:=SmallGroup(432,262);
// by ID
G=gap.SmallGroup(432,262);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-3,-2,-3,504,198,268,94,409,192,6724,452,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^18=e^3=1,b^2=c^2=d^2=a^9,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^9*c,e*c*e^-1=a^9*c*d,e*d*e^-1=c>;
// generators/relations
Export