Copied to
clipboard

G = Q8⋊C93S3order 432 = 24·33

The semidirect product of Q8⋊C9 and S3 acting through Inn(Q8⋊C9)

non-abelian, soluble

Aliases: Q8⋊C93S3, Q83S3⋊C9, (C3×Q8).C18, C6.16(S3×A4), C3⋊(Q8.C18), Q8.2(S3×C9), (C3×Dic3).1A4, Dic3.(C3.A4), (Q8×C32).2C6, C32.2(C4.A4), C3.4(Dic3.A4), (C3×Q8⋊C9)⋊1C2, C6.1(C2×C3.A4), C2.2(S3×C3.A4), (C3×C6).11(C2×A4), (C3×Q83S3).C3, (C3×Q8).18(C3×S3), SmallGroup(432,267)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8 — Q8⋊C93S3
C1C2C6C3×Q8Q8×C32C3×Q8⋊C9 — Q8⋊C93S3
C3×Q8 — Q8⋊C93S3
C1C6

Generators and relations for Q8⋊C93S3
 G = < a,b,c,d,e | a4=c9=d3=e2=1, b2=a2, bab-1=a-1, cac-1=b, ad=da, ae=ea, cbc-1=ab, bd=db, ebe=a2b, cd=dc, ece=a-1bc, ede=d-1 >

Subgroups: 228 in 57 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C9, C32, Dic3, C12, D6, C2×C6, C4○D4, C18, C3×S3, C3×C6, C4×S3, D12, C2×C12, C3×D4, C3×Q8, C3×Q8, C3×C9, C36, C3×Dic3, C3×C12, S3×C6, Q83S3, C3×C4○D4, C3×C18, Q8⋊C9, Q8⋊C9, S3×C12, C3×D12, Q8×C32, C9×Dic3, Q8.C18, C3×Q83S3, C3×Q8⋊C9, Q8⋊C93S3
Quotients: C1, C2, C3, S3, C6, C9, A4, C18, C3×S3, C2×A4, C3.A4, C4.A4, S3×C9, C2×C3.A4, S3×A4, Q8.C18, Dic3.A4, S3×C3.A4, Q8⋊C93S3

Smallest permutation representation of Q8⋊C93S3
On 144 points
Generators in S144
(1 59 74 101)(2 40 75 10)(3 85 76 72)(4 62 77 104)(5 43 78 13)(6 88 79 66)(7 56 80 107)(8 37 81 16)(9 82 73 69)(11 103 41 61)(12 86 42 64)(14 106 44 55)(15 89 45 67)(17 100 38 58)(18 83 39 70)(19 126 92 134)(20 117 93 28)(21 137 94 51)(22 120 95 128)(23 111 96 31)(24 140 97 54)(25 123 98 131)(26 114 99 34)(27 143 91 48)(29 127 109 119)(30 138 110 52)(32 130 112 122)(33 141 113 46)(35 133 115 125)(36 144 116 49)(47 124 142 132)(50 118 136 135)(53 121 139 129)(57 90 108 68)(60 84 102 71)(63 87 105 65)
(1 39 74 18)(2 84 75 71)(3 61 76 103)(4 42 77 12)(5 87 78 65)(6 55 79 106)(7 45 80 15)(8 90 81 68)(9 58 73 100)(10 102 40 60)(11 85 41 72)(13 105 43 63)(14 88 44 66)(16 108 37 57)(17 82 38 69)(19 116 92 36)(20 136 93 50)(21 119 94 127)(22 110 95 30)(23 139 96 53)(24 122 97 130)(25 113 98 33)(26 142 99 47)(27 125 91 133)(28 135 117 118)(29 137 109 51)(31 129 111 121)(32 140 112 54)(34 132 114 124)(35 143 115 48)(46 123 141 131)(49 126 144 134)(52 120 138 128)(56 89 107 67)(59 83 101 70)(62 86 104 64)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 40 43)(38 41 44)(39 42 45)(46 52 49)(47 53 50)(48 54 51)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 97 94)(92 98 95)(93 99 96)(100 103 106)(101 104 107)(102 105 108)(109 115 112)(110 116 113)(111 117 114)(118 124 121)(119 125 122)(120 126 123)(127 133 130)(128 134 131)(129 135 132)(136 142 139)(137 143 140)(138 144 141)
(1 26)(2 133)(3 144)(4 20)(5 127)(6 138)(7 23)(8 130)(9 141)(10 35)(11 92)(12 136)(13 29)(14 95)(15 139)(16 32)(17 98)(18 142)(19 41)(21 65)(22 44)(24 68)(25 38)(27 71)(28 104)(30 66)(31 107)(33 69)(34 101)(36 72)(37 112)(39 47)(40 115)(42 50)(43 109)(45 53)(46 73)(48 102)(49 76)(51 105)(52 79)(54 108)(55 120)(56 111)(57 140)(58 123)(59 114)(60 143)(61 126)(62 117)(63 137)(64 118)(67 121)(70 124)(74 99)(75 125)(77 93)(78 119)(80 96)(81 122)(82 113)(83 132)(84 91)(85 116)(86 135)(87 94)(88 110)(89 129)(90 97)(100 131)(103 134)(106 128)

G:=sub<Sym(144)| (1,59,74,101)(2,40,75,10)(3,85,76,72)(4,62,77,104)(5,43,78,13)(6,88,79,66)(7,56,80,107)(8,37,81,16)(9,82,73,69)(11,103,41,61)(12,86,42,64)(14,106,44,55)(15,89,45,67)(17,100,38,58)(18,83,39,70)(19,126,92,134)(20,117,93,28)(21,137,94,51)(22,120,95,128)(23,111,96,31)(24,140,97,54)(25,123,98,131)(26,114,99,34)(27,143,91,48)(29,127,109,119)(30,138,110,52)(32,130,112,122)(33,141,113,46)(35,133,115,125)(36,144,116,49)(47,124,142,132)(50,118,136,135)(53,121,139,129)(57,90,108,68)(60,84,102,71)(63,87,105,65), (1,39,74,18)(2,84,75,71)(3,61,76,103)(4,42,77,12)(5,87,78,65)(6,55,79,106)(7,45,80,15)(8,90,81,68)(9,58,73,100)(10,102,40,60)(11,85,41,72)(13,105,43,63)(14,88,44,66)(16,108,37,57)(17,82,38,69)(19,116,92,36)(20,136,93,50)(21,119,94,127)(22,110,95,30)(23,139,96,53)(24,122,97,130)(25,113,98,33)(26,142,99,47)(27,125,91,133)(28,135,117,118)(29,137,109,51)(31,129,111,121)(32,140,112,54)(34,132,114,124)(35,143,115,48)(46,123,141,131)(49,126,144,134)(52,120,138,128)(56,89,107,67)(59,83,101,70)(62,86,104,64), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,97,94)(92,98,95)(93,99,96)(100,103,106)(101,104,107)(102,105,108)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141), (1,26)(2,133)(3,144)(4,20)(5,127)(6,138)(7,23)(8,130)(9,141)(10,35)(11,92)(12,136)(13,29)(14,95)(15,139)(16,32)(17,98)(18,142)(19,41)(21,65)(22,44)(24,68)(25,38)(27,71)(28,104)(30,66)(31,107)(33,69)(34,101)(36,72)(37,112)(39,47)(40,115)(42,50)(43,109)(45,53)(46,73)(48,102)(49,76)(51,105)(52,79)(54,108)(55,120)(56,111)(57,140)(58,123)(59,114)(60,143)(61,126)(62,117)(63,137)(64,118)(67,121)(70,124)(74,99)(75,125)(77,93)(78,119)(80,96)(81,122)(82,113)(83,132)(84,91)(85,116)(86,135)(87,94)(88,110)(89,129)(90,97)(100,131)(103,134)(106,128)>;

G:=Group( (1,59,74,101)(2,40,75,10)(3,85,76,72)(4,62,77,104)(5,43,78,13)(6,88,79,66)(7,56,80,107)(8,37,81,16)(9,82,73,69)(11,103,41,61)(12,86,42,64)(14,106,44,55)(15,89,45,67)(17,100,38,58)(18,83,39,70)(19,126,92,134)(20,117,93,28)(21,137,94,51)(22,120,95,128)(23,111,96,31)(24,140,97,54)(25,123,98,131)(26,114,99,34)(27,143,91,48)(29,127,109,119)(30,138,110,52)(32,130,112,122)(33,141,113,46)(35,133,115,125)(36,144,116,49)(47,124,142,132)(50,118,136,135)(53,121,139,129)(57,90,108,68)(60,84,102,71)(63,87,105,65), (1,39,74,18)(2,84,75,71)(3,61,76,103)(4,42,77,12)(5,87,78,65)(6,55,79,106)(7,45,80,15)(8,90,81,68)(9,58,73,100)(10,102,40,60)(11,85,41,72)(13,105,43,63)(14,88,44,66)(16,108,37,57)(17,82,38,69)(19,116,92,36)(20,136,93,50)(21,119,94,127)(22,110,95,30)(23,139,96,53)(24,122,97,130)(25,113,98,33)(26,142,99,47)(27,125,91,133)(28,135,117,118)(29,137,109,51)(31,129,111,121)(32,140,112,54)(34,132,114,124)(35,143,115,48)(46,123,141,131)(49,126,144,134)(52,120,138,128)(56,89,107,67)(59,83,101,70)(62,86,104,64), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,97,94)(92,98,95)(93,99,96)(100,103,106)(101,104,107)(102,105,108)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141), (1,26)(2,133)(3,144)(4,20)(5,127)(6,138)(7,23)(8,130)(9,141)(10,35)(11,92)(12,136)(13,29)(14,95)(15,139)(16,32)(17,98)(18,142)(19,41)(21,65)(22,44)(24,68)(25,38)(27,71)(28,104)(30,66)(31,107)(33,69)(34,101)(36,72)(37,112)(39,47)(40,115)(42,50)(43,109)(45,53)(46,73)(48,102)(49,76)(51,105)(52,79)(54,108)(55,120)(56,111)(57,140)(58,123)(59,114)(60,143)(61,126)(62,117)(63,137)(64,118)(67,121)(70,124)(74,99)(75,125)(77,93)(78,119)(80,96)(81,122)(82,113)(83,132)(84,91)(85,116)(86,135)(87,94)(88,110)(89,129)(90,97)(100,131)(103,134)(106,128) );

G=PermutationGroup([[(1,59,74,101),(2,40,75,10),(3,85,76,72),(4,62,77,104),(5,43,78,13),(6,88,79,66),(7,56,80,107),(8,37,81,16),(9,82,73,69),(11,103,41,61),(12,86,42,64),(14,106,44,55),(15,89,45,67),(17,100,38,58),(18,83,39,70),(19,126,92,134),(20,117,93,28),(21,137,94,51),(22,120,95,128),(23,111,96,31),(24,140,97,54),(25,123,98,131),(26,114,99,34),(27,143,91,48),(29,127,109,119),(30,138,110,52),(32,130,112,122),(33,141,113,46),(35,133,115,125),(36,144,116,49),(47,124,142,132),(50,118,136,135),(53,121,139,129),(57,90,108,68),(60,84,102,71),(63,87,105,65)], [(1,39,74,18),(2,84,75,71),(3,61,76,103),(4,42,77,12),(5,87,78,65),(6,55,79,106),(7,45,80,15),(8,90,81,68),(9,58,73,100),(10,102,40,60),(11,85,41,72),(13,105,43,63),(14,88,44,66),(16,108,37,57),(17,82,38,69),(19,116,92,36),(20,136,93,50),(21,119,94,127),(22,110,95,30),(23,139,96,53),(24,122,97,130),(25,113,98,33),(26,142,99,47),(27,125,91,133),(28,135,117,118),(29,137,109,51),(31,129,111,121),(32,140,112,54),(34,132,114,124),(35,143,115,48),(46,123,141,131),(49,126,144,134),(52,120,138,128),(56,89,107,67),(59,83,101,70),(62,86,104,64)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,40,43),(38,41,44),(39,42,45),(46,52,49),(47,53,50),(48,54,51),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,97,94),(92,98,95),(93,99,96),(100,103,106),(101,104,107),(102,105,108),(109,115,112),(110,116,113),(111,117,114),(118,124,121),(119,125,122),(120,126,123),(127,133,130),(128,134,131),(129,135,132),(136,142,139),(137,143,140),(138,144,141)], [(1,26),(2,133),(3,144),(4,20),(5,127),(6,138),(7,23),(8,130),(9,141),(10,35),(11,92),(12,136),(13,29),(14,95),(15,139),(16,32),(17,98),(18,142),(19,41),(21,65),(22,44),(24,68),(25,38),(27,71),(28,104),(30,66),(31,107),(33,69),(34,101),(36,72),(37,112),(39,47),(40,115),(42,50),(43,109),(45,53),(46,73),(48,102),(49,76),(51,105),(52,79),(54,108),(55,120),(56,111),(57,140),(58,123),(59,114),(60,143),(61,126),(62,117),(63,137),(64,118),(67,121),(70,124),(74,99),(75,125),(77,93),(78,119),(80,96),(81,122),(82,113),(83,132),(84,91),(85,116),(86,135),(87,94),(88,110),(89,129),(90,97),(100,131),(103,134),(106,128)]])

63 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B4C6A6B6C6D6E6F6G9A···9F9G···9L12A12B12C12D12E12F12G12H12I18A···18F18G···18L36A···36L
order1223333344466666669···99···912121212121212121218···1818···1836···36
size1118112223361122218184···48···83333661212124···48···812···12

63 irreducible representations

dim11111122222333344466
type+++++++
imageC1C2C3C6C9C18S3C3×S3C4.A4S3×C9Q8.C18A4C2×A4C3.A4C2×C3.A4Dic3.A4Dic3.A4Q8⋊C93S3S3×A4S3×C3.A4
kernelQ8⋊C93S3C3×Q8⋊C9C3×Q83S3Q8×C32Q83S3C3×Q8Q8⋊C9C3×Q8C32Q8C3C3×Dic3C3×C6Dic3C6C3C3C1C6C2
# reps112266126612112212612

Matrix representation of Q8⋊C93S3 in GL4(𝔽37) generated by

1000
0100
003617
00261
,
1000
0100
00135
00136
,
16000
01600
002622
00010
,
26000
01000
0010
0001
,
0100
1000
0069
002931
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,36,26,0,0,17,1],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,35,36],[16,0,0,0,0,16,0,0,0,0,26,0,0,0,22,10],[26,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,6,29,0,0,9,31] >;

Q8⋊C93S3 in GAP, Magma, Sage, TeX

Q_8\rtimes C_9\rtimes_3S_3
% in TeX

G:=Group("Q8:C9:3S3");
// GroupNames label

G:=SmallGroup(432,267);
// by ID

G=gap.SmallGroup(432,267);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-3,-2,1512,50,766,360,326,515,242,6053]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^9=d^3=e^2=1,b^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,a*d=d*a,a*e=e*a,c*b*c^-1=a*b,b*d=d*b,e*b*e=a^2*b,c*d=d*c,e*c*e=a^-1*b*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽