Extensions 1→N→G→Q→1 with N=C18.D6 and Q=C2

Direct product G=N×Q with N=C18.D6 and Q=C2
dρLabelID
C2×C18.D672C2xC18.D6432,306

Semidirect products G=N:Q with N=C18.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
C18.D61C2 = Dic65D9φ: C2/C1C2 ⊆ Out C18.D6724+C18.D6:1C2432,282
C18.D62C2 = Dic3.D18φ: C2/C1C2 ⊆ Out C18.D6724C18.D6:2C2432,309
C18.D63C2 = D18⋊D6φ: C2/C1C2 ⊆ Out C18.D6364+C18.D6:3C2432,315
C18.D64C2 = Dic9.D6φ: C2/C1C2 ⊆ Out C18.D6724+C18.D6:4C2432,289
C18.D65C2 = D18.3D6φ: C2/C1C2 ⊆ Out C18.D6724C18.D6:5C2432,305
C18.D66C2 = C4×S3×D9φ: trivial image724C18.D6:6C2432,290

Non-split extensions G=N.Q with N=C18.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
C18.D6.C2 = Dic18⋊S3φ: C2/C1C2 ⊆ Out C18.D6724C18.D6.C2432,283

׿
×
𝔽