Copied to
clipboard

G = Dic9.D6order 432 = 24·33

4th non-split extension by Dic9 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: D6.7D18, C36.36D6, Dic18:5S3, C12.26D18, Dic9.4D6, Dic3.11D18, C12.50S32, (C4xS3):2D9, (S3xC36):4C2, C4.14(S3xD9), C36:S3:3C2, C9:D12:2C2, (S3xC12).6S3, (S3xC6).28D6, (C3xC12).97D6, C9:1(Q8:3S3), (C3xDic18):4C2, C18.D6:4C2, (C3xC36).7C22, C3:1(D36:5C2), C6.10(C22xD9), C18.10(C22xS3), (C3xC18).10C23, (C3xDic3).38D6, (S3xC18).11C22, C3.2(D6.6D6), C32.4(C4oD12), (C3xDic9).4C22, (C9xDic3).12C22, C6.29(C2xS32), C2.14(C2xS3xD9), (C3xC9):7(C4oD4), (C2xC9:S3).2C22, (C3xC6).78(C22xS3), SmallGroup(432,289)

Series: Derived Chief Lower central Upper central

C1C3xC18 — Dic9.D6
C1C3C32C3xC9C3xC18S3xC18C9:D12 — Dic9.D6
C3xC9C3xC18 — Dic9.D6
C1C2C4

Generators and relations for Dic9.D6
 G = < a,b,c,d | a18=1, b2=c6=d2=a9, bab-1=a-1, ac=ca, ad=da, cbc-1=a9b, bd=db, dcd-1=c5 >

Subgroups: 960 in 136 conjugacy classes, 41 normal (31 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, C9, C9, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C4oD4, D9, C18, C18, C3xS3, C3:S3, C3xC6, Dic6, C4xS3, C4xS3, D12, C3:D4, C2xC12, C3xQ8, C3xC9, Dic9, C36, C36, D18, C2xC18, C3xDic3, C3xDic3, C3xC12, S3xC6, C2xC3:S3, C4oD12, Q8:3S3, S3xC9, C9:S3, C3xC18, Dic18, C4xD9, D36, C9:D4, C2xC36, C6.D6, C3:D12, C3xDic6, S3xC12, C12:S3, C3xDic9, C9xDic3, C3xC36, S3xC18, C2xC9:S3, D36:5C2, D6.6D6, C18.D6, C9:D12, C3xDic18, S3xC36, C36:S3, Dic9.D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, D9, C22xS3, D18, S32, C4oD12, Q8:3S3, C22xD9, C2xS32, S3xD9, D36:5C2, D6.6D6, C2xS3xD9, Dic9.D6

Smallest permutation representation of Dic9.D6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 51 10 42)(2 50 11 41)(3 49 12 40)(4 48 13 39)(5 47 14 38)(6 46 15 37)(7 45 16 54)(8 44 17 53)(9 43 18 52)(19 66 28 57)(20 65 29 56)(21 64 30 55)(22 63 31 72)(23 62 32 71)(24 61 33 70)(25 60 34 69)(26 59 35 68)(27 58 36 67)
(1 31 4 34 7 19 10 22 13 25 16 28)(2 32 5 35 8 20 11 23 14 26 17 29)(3 33 6 36 9 21 12 24 15 27 18 30)(37 67 52 64 49 61 46 58 43 55 40 70)(38 68 53 65 50 62 47 59 44 56 41 71)(39 69 54 66 51 63 48 60 45 57 42 72)
(1 39 10 48)(2 40 11 49)(3 41 12 50)(4 42 13 51)(5 43 14 52)(6 44 15 53)(7 45 16 54)(8 46 17 37)(9 47 18 38)(19 69 28 60)(20 70 29 61)(21 71 30 62)(22 72 31 63)(23 55 32 64)(24 56 33 65)(25 57 34 66)(26 58 35 67)(27 59 36 68)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,51,10,42)(2,50,11,41)(3,49,12,40)(4,48,13,39)(5,47,14,38)(6,46,15,37)(7,45,16,54)(8,44,17,53)(9,43,18,52)(19,66,28,57)(20,65,29,56)(21,64,30,55)(22,63,31,72)(23,62,32,71)(24,61,33,70)(25,60,34,69)(26,59,35,68)(27,58,36,67), (1,31,4,34,7,19,10,22,13,25,16,28)(2,32,5,35,8,20,11,23,14,26,17,29)(3,33,6,36,9,21,12,24,15,27,18,30)(37,67,52,64,49,61,46,58,43,55,40,70)(38,68,53,65,50,62,47,59,44,56,41,71)(39,69,54,66,51,63,48,60,45,57,42,72), (1,39,10,48)(2,40,11,49)(3,41,12,50)(4,42,13,51)(5,43,14,52)(6,44,15,53)(7,45,16,54)(8,46,17,37)(9,47,18,38)(19,69,28,60)(20,70,29,61)(21,71,30,62)(22,72,31,63)(23,55,32,64)(24,56,33,65)(25,57,34,66)(26,58,35,67)(27,59,36,68)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,51,10,42)(2,50,11,41)(3,49,12,40)(4,48,13,39)(5,47,14,38)(6,46,15,37)(7,45,16,54)(8,44,17,53)(9,43,18,52)(19,66,28,57)(20,65,29,56)(21,64,30,55)(22,63,31,72)(23,62,32,71)(24,61,33,70)(25,60,34,69)(26,59,35,68)(27,58,36,67), (1,31,4,34,7,19,10,22,13,25,16,28)(2,32,5,35,8,20,11,23,14,26,17,29)(3,33,6,36,9,21,12,24,15,27,18,30)(37,67,52,64,49,61,46,58,43,55,40,70)(38,68,53,65,50,62,47,59,44,56,41,71)(39,69,54,66,51,63,48,60,45,57,42,72), (1,39,10,48)(2,40,11,49)(3,41,12,50)(4,42,13,51)(5,43,14,52)(6,44,15,53)(7,45,16,54)(8,46,17,37)(9,47,18,38)(19,69,28,60)(20,70,29,61)(21,71,30,62)(22,72,31,63)(23,55,32,64)(24,56,33,65)(25,57,34,66)(26,58,35,67)(27,59,36,68) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,51,10,42),(2,50,11,41),(3,49,12,40),(4,48,13,39),(5,47,14,38),(6,46,15,37),(7,45,16,54),(8,44,17,53),(9,43,18,52),(19,66,28,57),(20,65,29,56),(21,64,30,55),(22,63,31,72),(23,62,32,71),(24,61,33,70),(25,60,34,69),(26,59,35,68),(27,58,36,67)], [(1,31,4,34,7,19,10,22,13,25,16,28),(2,32,5,35,8,20,11,23,14,26,17,29),(3,33,6,36,9,21,12,24,15,27,18,30),(37,67,52,64,49,61,46,58,43,55,40,70),(38,68,53,65,50,62,47,59,44,56,41,71),(39,69,54,66,51,63,48,60,45,57,42,72)], [(1,39,10,48),(2,40,11,49),(3,41,12,50),(4,42,13,51),(5,43,14,52),(6,44,15,53),(7,45,16,54),(8,46,17,37),(9,47,18,38),(19,69,28,60),(20,70,29,61),(21,71,30,62),(22,72,31,63),(23,55,32,64),(24,56,33,65),(25,57,34,66),(26,58,35,67),(27,59,36,68)]])

63 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E9A9B9C9D9E9F12A12B12C12D12E12F12G12H12I18A18B18C18D18E18F18G···18L36A···36F36G···36L36M···36R
order12222333444446666699999912121212121212121218181818181818···1836···3636···3636···36
size1165454224233181822466222444224446636362224446···62···24···46···6

63 irreducible representations

dim111111222222222222224444444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2S3S3D6D6D6D6D6C4oD4D9D18D18D18C4oD12D36:5C2S32Q8:3S3C2xS32S3xD9D6.6D6C2xS3xD9Dic9.D6
kernelDic9.D6C18.D6C9:D12C3xDic18S3xC36C36:S3Dic18S3xC12Dic9C36C3xDic3C3xC12S3xC6C3xC9C4xS3Dic3C12D6C32C3C12C9C6C4C3C2C1
# reps1221111121111233334121113236

Matrix representation of Dic9.D6 in GL6(F37)

0360000
110000
001000
000100
00002631
0000620
,
600000
31310000
0036000
0003600
000001
000010
,
5100000
27320000
000100
00363600
000010
000001
,
600000
060000
0003600
0036000
000010
000001

G:=sub<GL(6,GF(37))| [0,1,0,0,0,0,36,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,26,6,0,0,0,0,31,20],[6,31,0,0,0,0,0,31,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[5,27,0,0,0,0,10,32,0,0,0,0,0,0,0,36,0,0,0,0,1,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,36,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

Dic9.D6 in GAP, Magma, Sage, TeX

{\rm Dic}_9.D_6
% in TeX

G:=Group("Dic9.D6");
// GroupNames label

G:=SmallGroup(432,289);
// by ID

G=gap.SmallGroup(432,289);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,64,135,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^18=1,b^2=c^6=d^2=a^9,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^9*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<