Extensions 1→N→G→Q→1 with N=C3xD12 and Q=S3

Direct product G=NxQ with N=C3xD12 and Q=S3
dρLabelID
C3xS3xD12484C3xS3xD12432,649

Semidirect products G=N:Q with N=C3xD12 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xD12):1S3 = C3xC32:2D8φ: S3/C3C2 ⊆ Out C3xD12484(C3xD12):1S3432,418
(C3xD12):2S3 = C33:6D8φ: S3/C3C2 ⊆ Out C3xD12144(C3xD12):2S3432,436
(C3xD12):3S3 = C33:7D8φ: S3/C3C2 ⊆ Out C3xD1272(C3xD12):3S3432,437
(C3xD12):4S3 = C3xD12:S3φ: S3/C3C2 ⊆ Out C3xD12484(C3xD12):4S3432,644
(C3xD12):5S3 = C3xD6:D6φ: S3/C3C2 ⊆ Out C3xD12484(C3xD12):5S3432,650
(C3xD12):6S3 = (C3xD12):S3φ: S3/C3C2 ⊆ Out C3xD12144(C3xD12):6S3432,661
(C3xD12):7S3 = D12:(C3:S3)φ: S3/C3C2 ⊆ Out C3xD1272(C3xD12):7S3432,662
(C3xD12):8S3 = C3:S3xD12φ: S3/C3C2 ⊆ Out C3xD1272(C3xD12):8S3432,672
(C3xD12):9S3 = C12:S32φ: S3/C3C2 ⊆ Out C3xD1272(C3xD12):9S3432,673
(C3xD12):10S3 = C3xC3:D24φ: S3/C3C2 ⊆ Out C3xD12484(C3xD12):10S3432,419
(C3xD12):11S3 = C3xD12:5S3φ: trivial image484(C3xD12):11S3432,643

Non-split extensions G=N.Q with N=C3xD12 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xD12).1S3 = D36:S3φ: S3/C3C2 ⊆ Out C3xD121444(C3xD12).1S3432,68
(C3xD12).2S3 = C9:D24φ: S3/C3C2 ⊆ Out C3xD12724+(C3xD12).2S3432,69
(C3xD12).3S3 = D12.D9φ: S3/C3C2 ⊆ Out C3xD121444(C3xD12).3S3432,70
(C3xD12).4S3 = C36.D6φ: S3/C3C2 ⊆ Out C3xD121444-(C3xD12).4S3432,71
(C3xD12).5S3 = D12:5D9φ: S3/C3C2 ⊆ Out C3xD121444-(C3xD12).5S3432,285
(C3xD12).6S3 = D12:D9φ: S3/C3C2 ⊆ Out C3xD12724(C3xD12).6S3432,286
(C3xD12).7S3 = D9xD12φ: S3/C3C2 ⊆ Out C3xD12724+(C3xD12).7S3432,292
(C3xD12).8S3 = C36:D6φ: S3/C3C2 ⊆ Out C3xD12724(C3xD12).8S3432,293
(C3xD12).9S3 = C3xDic6:S3φ: S3/C3C2 ⊆ Out C3xD12484(C3xD12).9S3432,420
(C3xD12).10S3 = C33:12SD16φ: S3/C3C2 ⊆ Out C3xD12144(C3xD12).10S3432,439
(C3xD12).11S3 = C33:14SD16φ: S3/C3C2 ⊆ Out C3xD12144(C3xD12).11S3432,441
(C3xD12).12S3 = C3xD12.S3φ: S3/C3C2 ⊆ Out C3xD12484(C3xD12).12S3432,421

׿
x
:
Z
F
o
wr
Q
<