d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3xS3xD12 | 48 | 4 | C3xS3xD12 | 432,649 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3xD12):1S3 = C3xC32:2D8 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 48 | 4 | (C3xD12):1S3 | 432,418 |
(C3xD12):2S3 = C33:6D8 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | (C3xD12):2S3 | 432,436 | |
(C3xD12):3S3 = C33:7D8 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | (C3xD12):3S3 | 432,437 | |
(C3xD12):4S3 = C3xD12:S3 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 48 | 4 | (C3xD12):4S3 | 432,644 |
(C3xD12):5S3 = C3xD6:D6 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 48 | 4 | (C3xD12):5S3 | 432,650 |
(C3xD12):6S3 = (C3xD12):S3 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | (C3xD12):6S3 | 432,661 | |
(C3xD12):7S3 = D12:(C3:S3) | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | (C3xD12):7S3 | 432,662 | |
(C3xD12):8S3 = C3:S3xD12 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | (C3xD12):8S3 | 432,672 | |
(C3xD12):9S3 = C12:S32 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | (C3xD12):9S3 | 432,673 | |
(C3xD12):10S3 = C3xC3:D24 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 48 | 4 | (C3xD12):10S3 | 432,419 |
(C3xD12):11S3 = C3xD12:5S3 | φ: trivial image | 48 | 4 | (C3xD12):11S3 | 432,643 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3xD12).1S3 = D36:S3 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | 4 | (C3xD12).1S3 | 432,68 |
(C3xD12).2S3 = C9:D24 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | 4+ | (C3xD12).2S3 | 432,69 |
(C3xD12).3S3 = D12.D9 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | 4 | (C3xD12).3S3 | 432,70 |
(C3xD12).4S3 = C36.D6 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | 4- | (C3xD12).4S3 | 432,71 |
(C3xD12).5S3 = D12:5D9 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | 4- | (C3xD12).5S3 | 432,285 |
(C3xD12).6S3 = D12:D9 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | 4 | (C3xD12).6S3 | 432,286 |
(C3xD12).7S3 = D9xD12 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | 4+ | (C3xD12).7S3 | 432,292 |
(C3xD12).8S3 = C36:D6 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 72 | 4 | (C3xD12).8S3 | 432,293 |
(C3xD12).9S3 = C3xDic6:S3 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 48 | 4 | (C3xD12).9S3 | 432,420 |
(C3xD12).10S3 = C33:12SD16 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | (C3xD12).10S3 | 432,439 | |
(C3xD12).11S3 = C33:14SD16 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 144 | (C3xD12).11S3 | 432,441 | |
(C3xD12).12S3 = C3xD12.S3 | φ: S3/C3 → C2 ⊆ Out C3xD12 | 48 | 4 | (C3xD12).12S3 | 432,421 |