Copied to
clipboard

G = D125D9order 432 = 24·33

The semidirect product of D12 and D9 acting through Inn(D12)

metabelian, supersoluble, monomial

Aliases: D125D9, D18.6D6, D6.1D18, C36.25D6, C12.36D18, Dic9.11D6, C12.17S32, (C4×D9)⋊2S3, C4.7(S3×D9), (C9×D12)⋊3C2, (C12×D9)⋊2C2, (S3×C6).1D6, D6⋊D91C2, C93(C4○D12), (S3×Dic9)⋊1C2, (C3×D12).5S3, (C3×C12).94D6, C32(D42D9), C12.D98C2, C6.6(C22×D9), C18.6(C22×S3), (C3×C18).6C23, (C6×D9).7C22, (S3×C18).1C22, (C3×C36).28C22, C9⋊Dic3.3C22, C3.2(D125S3), (C3×Dic9).9C22, C32.2(D42S3), C6.25(C2×S32), C2.10(C2×S3×D9), (C3×C9)⋊3(C4○D4), (C3×C6).74(C22×S3), SmallGroup(432,285)

Series: Derived Chief Lower central Upper central

C1C3×C18 — D125D9
C1C3C32C3×C9C3×C18S3×C18S3×Dic9 — D125D9
C3×C9C3×C18 — D125D9
C1C2C4

Generators and relations for D125D9
 G = < a,b,c,d | a12=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a6b, dcd=c-1 >

Subgroups: 732 in 132 conjugacy classes, 41 normal (29 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, D6, C2×C6, C4○D4, D9, C18, C18, C3×S3, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×C9, Dic9, Dic9, C36, C36, D18, C2×C18, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C4○D12, D42S3, C3×D9, S3×C9, C3×C18, Dic18, C4×D9, C2×Dic9, C9⋊D4, D4×C9, S3×Dic3, D6⋊S3, S3×C12, C3×D12, C324Q8, C3×Dic9, C9⋊Dic3, C3×C36, C6×D9, S3×C18, D42D9, D125S3, S3×Dic9, D6⋊D9, C12×D9, C9×D12, C12.D9, D125D9
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, D18, S32, C4○D12, D42S3, C22×D9, C2×S32, S3×D9, D42D9, D125S3, C2×S3×D9, D125D9

Smallest permutation representation of D125D9
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 107)(2 106)(3 105)(4 104)(5 103)(6 102)(7 101)(8 100)(9 99)(10 98)(11 97)(12 108)(13 116)(14 115)(15 114)(16 113)(17 112)(18 111)(19 110)(20 109)(21 120)(22 119)(23 118)(24 117)(25 47)(26 46)(27 45)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(36 48)(49 87)(50 86)(51 85)(52 96)(53 95)(54 94)(55 93)(56 92)(57 91)(58 90)(59 89)(60 88)(61 81)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 84)(71 83)(72 82)(121 138)(122 137)(123 136)(124 135)(125 134)(126 133)(127 144)(128 143)(129 142)(130 141)(131 140)(132 139)
(1 121 66 9 129 62 5 125 70)(2 122 67 10 130 63 6 126 71)(3 123 68 11 131 64 7 127 72)(4 124 69 12 132 65 8 128 61)(13 45 54 17 37 58 21 41 50)(14 46 55 18 38 59 22 42 51)(15 47 56 19 39 60 23 43 52)(16 48 57 20 40 49 24 44 53)(25 92 110 33 88 118 29 96 114)(26 93 111 34 89 119 30 85 115)(27 94 112 35 90 120 31 86 116)(28 95 113 36 91 109 32 87 117)(73 108 139 77 100 143 81 104 135)(74 97 140 78 101 144 82 105 136)(75 98 141 79 102 133 83 106 137)(76 99 142 80 103 134 84 107 138)
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 57)(9 58)(10 59)(11 60)(12 49)(13 70)(14 71)(15 72)(16 61)(17 62)(18 63)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 138)(26 139)(27 140)(28 141)(29 142)(30 143)(31 144)(32 133)(33 134)(34 135)(35 136)(36 137)(37 129)(38 130)(39 131)(40 132)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(73 111)(74 112)(75 113)(76 114)(77 115)(78 116)(79 117)(80 118)(81 119)(82 120)(83 109)(84 110)(85 100)(86 101)(87 102)(88 103)(89 104)(90 105)(91 106)(92 107)(93 108)(94 97)(95 98)(96 99)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,107)(2,106)(3,105)(4,104)(5,103)(6,102)(7,101)(8,100)(9,99)(10,98)(11,97)(12,108)(13,116)(14,115)(15,114)(16,113)(17,112)(18,111)(19,110)(20,109)(21,120)(22,119)(23,118)(24,117)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(36,48)(49,87)(50,86)(51,85)(52,96)(53,95)(54,94)(55,93)(56,92)(57,91)(58,90)(59,89)(60,88)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,84)(71,83)(72,82)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,144)(128,143)(129,142)(130,141)(131,140)(132,139), (1,121,66,9,129,62,5,125,70)(2,122,67,10,130,63,6,126,71)(3,123,68,11,131,64,7,127,72)(4,124,69,12,132,65,8,128,61)(13,45,54,17,37,58,21,41,50)(14,46,55,18,38,59,22,42,51)(15,47,56,19,39,60,23,43,52)(16,48,57,20,40,49,24,44,53)(25,92,110,33,88,118,29,96,114)(26,93,111,34,89,119,30,85,115)(27,94,112,35,90,120,31,86,116)(28,95,113,36,91,109,32,87,117)(73,108,139,77,100,143,81,104,135)(74,97,140,78,101,144,82,105,136)(75,98,141,79,102,133,83,106,137)(76,99,142,80,103,134,84,107,138), (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,49)(13,70)(14,71)(15,72)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,133)(33,134)(34,135)(35,136)(36,137)(37,129)(38,130)(39,131)(40,132)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(73,111)(74,112)(75,113)(76,114)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,109)(84,110)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(94,97)(95,98)(96,99)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,107)(2,106)(3,105)(4,104)(5,103)(6,102)(7,101)(8,100)(9,99)(10,98)(11,97)(12,108)(13,116)(14,115)(15,114)(16,113)(17,112)(18,111)(19,110)(20,109)(21,120)(22,119)(23,118)(24,117)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(36,48)(49,87)(50,86)(51,85)(52,96)(53,95)(54,94)(55,93)(56,92)(57,91)(58,90)(59,89)(60,88)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,84)(71,83)(72,82)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,144)(128,143)(129,142)(130,141)(131,140)(132,139), (1,121,66,9,129,62,5,125,70)(2,122,67,10,130,63,6,126,71)(3,123,68,11,131,64,7,127,72)(4,124,69,12,132,65,8,128,61)(13,45,54,17,37,58,21,41,50)(14,46,55,18,38,59,22,42,51)(15,47,56,19,39,60,23,43,52)(16,48,57,20,40,49,24,44,53)(25,92,110,33,88,118,29,96,114)(26,93,111,34,89,119,30,85,115)(27,94,112,35,90,120,31,86,116)(28,95,113,36,91,109,32,87,117)(73,108,139,77,100,143,81,104,135)(74,97,140,78,101,144,82,105,136)(75,98,141,79,102,133,83,106,137)(76,99,142,80,103,134,84,107,138), (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,49)(13,70)(14,71)(15,72)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,133)(33,134)(34,135)(35,136)(36,137)(37,129)(38,130)(39,131)(40,132)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(73,111)(74,112)(75,113)(76,114)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,109)(84,110)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(94,97)(95,98)(96,99) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,107),(2,106),(3,105),(4,104),(5,103),(6,102),(7,101),(8,100),(9,99),(10,98),(11,97),(12,108),(13,116),(14,115),(15,114),(16,113),(17,112),(18,111),(19,110),(20,109),(21,120),(22,119),(23,118),(24,117),(25,47),(26,46),(27,45),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(36,48),(49,87),(50,86),(51,85),(52,96),(53,95),(54,94),(55,93),(56,92),(57,91),(58,90),(59,89),(60,88),(61,81),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,84),(71,83),(72,82),(121,138),(122,137),(123,136),(124,135),(125,134),(126,133),(127,144),(128,143),(129,142),(130,141),(131,140),(132,139)], [(1,121,66,9,129,62,5,125,70),(2,122,67,10,130,63,6,126,71),(3,123,68,11,131,64,7,127,72),(4,124,69,12,132,65,8,128,61),(13,45,54,17,37,58,21,41,50),(14,46,55,18,38,59,22,42,51),(15,47,56,19,39,60,23,43,52),(16,48,57,20,40,49,24,44,53),(25,92,110,33,88,118,29,96,114),(26,93,111,34,89,119,30,85,115),(27,94,112,35,90,120,31,86,116),(28,95,113,36,91,109,32,87,117),(73,108,139,77,100,143,81,104,135),(74,97,140,78,101,144,82,105,136),(75,98,141,79,102,133,83,106,137),(76,99,142,80,103,134,84,107,138)], [(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,57),(9,58),(10,59),(11,60),(12,49),(13,70),(14,71),(15,72),(16,61),(17,62),(18,63),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,138),(26,139),(27,140),(28,141),(29,142),(30,143),(31,144),(32,133),(33,134),(34,135),(35,136),(36,137),(37,129),(38,130),(39,131),(40,132),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(73,111),(74,112),(75,113),(76,114),(77,115),(78,116),(79,117),(80,118),(81,119),(82,120),(83,109),(84,110),(85,100),(86,101),(87,102),(88,103),(89,104),(90,105),(91,106),(92,107),(93,108),(94,97),(95,98),(96,99)]])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G9A9B9C9D9E9F12A12B12C12D12E12F12G18A18B18C18D18E18F18G···18L36A···36I
order122223334444466666669999991212121212121218181818181818···1836···36
size11661822429954542241212181822244422444181822244412···124···4

54 irreducible representations

dim11111122222222222244444444
type+++++++++++++++++-++--+-
imageC1C2C2C2C2C2S3S3D6D6D6D6D6C4○D4D9D18D18C4○D12S32D42S3C2×S32S3×D9D42D9D125S3C2×S3×D9D125D9
kernelD125D9S3×Dic9D6⋊D9C12×D9C9×D12C12.D9C4×D9C3×D12Dic9C36D18C3×C12S3×C6C3×C9D12C12D6C9C12C32C6C4C3C3C2C1
# reps12211111111122336411133236

Matrix representation of D125D9 in GL6(𝔽37)

010000
3600000
0003600
001100
000010
000001
,
18110000
11190000
0003600
0036000
0000360
0000036
,
100000
010000
001000
000100
00001110
00003431
,
060000
3100000
0036000
0003600
0000624
00003431

G:=sub<GL(6,GF(37))| [0,36,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,36,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,11,0,0,0,0,11,19,0,0,0,0,0,0,0,36,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,34,0,0,0,0,10,31],[0,31,0,0,0,0,6,0,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,6,34,0,0,0,0,24,31] >;

D125D9 in GAP, Magma, Sage, TeX

D_{12}\rtimes_5D_9
% in TeX

G:=Group("D12:5D9");
// GroupNames label

G:=SmallGroup(432,285);
// by ID

G=gap.SmallGroup(432,285);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽