direct product, metabelian, supersoluble, monomial
Aliases: C3×D12.S3, C33⋊10SD16, C12.75S32, C12.28(S3×C6), (C3×D12).6C6, D12.1(C3×S3), (C3×C6).72D12, C6.25(C3×D12), C32⋊4Q8⋊8C6, (C3×D12).12S3, (C3×C12).173D6, C32⋊7(C3×SD16), (C32×C6).21D4, (C32×D12).2C2, C32⋊14(C24⋊C2), C6.43(C3⋊D12), C32⋊10(D4.S3), (C32×C12).4C22, (C3×C3⋊C8)⋊2C6, (C3×C3⋊C8)⋊9S3, C3⋊C8⋊2(C3×S3), C4.2(C3×S32), C3⋊3(C3×C24⋊C2), (C32×C3⋊C8)⋊5C2, C3⋊1(C3×D4.S3), C6.2(C3×C3⋊D4), (C3×C6).20(C3×D4), (C3×C12).38(C2×C6), C2.5(C3×C3⋊D12), (C3×C32⋊4Q8)⋊1C2, (C3×C6).71(C3⋊D4), SmallGroup(432,421)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D12.S3
G = < a,b,c,d,e | a3=b12=c2=d3=1, e2=b9, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=d-1 >
Subgroups: 440 in 122 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C62, C24⋊C2, D4.S3, C3×SD16, S3×C32, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, C3×Dic6, C3×D12, C3×D12, C32⋊4Q8, D4×C32, C3×C3⋊Dic3, C32×C12, S3×C3×C6, D12.S3, C3×C24⋊C2, C3×D4.S3, C32×C3⋊C8, C32×D12, C3×C32⋊4Q8, C3×D12.S3
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, SD16, C3×S3, D12, C3⋊D4, C3×D4, S32, S3×C6, C24⋊C2, D4.S3, C3×SD16, C3⋊D12, C3×D12, C3×C3⋊D4, C3×S32, D12.S3, C3×C24⋊C2, C3×D4.S3, C3×C3⋊D12, C3×D12.S3
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 36)(11 35)(12 34)(13 40)(14 39)(15 38)(16 37)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 19 10 16 7 13 4 22)(2 20 11 17 8 14 5 23)(3 21 12 18 9 15 6 24)(25 41 34 38 31 47 28 44)(26 42 35 39 32 48 29 45)(27 43 36 40 33 37 30 46)
G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,19,10,16,7,13,4,22)(2,20,11,17,8,14,5,23)(3,21,12,18,9,15,6,24)(25,41,34,38,31,47,28,44)(26,42,35,39,32,48,29,45)(27,43,36,40,33,37,30,46)>;
G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,19,10,16,7,13,4,22)(2,20,11,17,8,14,5,23)(3,21,12,18,9,15,6,24)(25,41,34,38,31,47,28,44)(26,42,35,39,32,48,29,45)(27,43,36,40,33,37,30,46) );
G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,36),(11,35),(12,34),(13,40),(14,39),(15,38),(16,37),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,19,10,16,7,13,4,22),(2,20,11,17,8,14,5,23),(3,21,12,18,9,15,6,24),(25,41,34,38,31,47,28,44),(26,42,35,39,32,48,29,45),(27,43,36,40,33,37,30,46)]])
72 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | ··· | 6S | 8A | 8B | 12A | ··· | 12H | 12I | ··· | 12Q | 12R | 12S | 24A | ··· | 24P |
order | 1 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 12 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 36 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 36 | 36 | 6 | ··· | 6 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | + | - | |||||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | S3 | D4 | D6 | SD16 | C3×S3 | C3×S3 | D12 | C3⋊D4 | C3×D4 | S3×C6 | C24⋊C2 | C3×SD16 | C3×D12 | C3×C3⋊D4 | C3×C24⋊C2 | S32 | D4.S3 | C3⋊D12 | C3×S32 | D12.S3 | C3×D4.S3 | C3×C3⋊D12 | C3×D12.S3 |
kernel | C3×D12.S3 | C32×C3⋊C8 | C32×D12 | C3×C32⋊4Q8 | D12.S3 | C3×C3⋊C8 | C3×D12 | C32⋊4Q8 | C3×C3⋊C8 | C3×D12 | C32×C6 | C3×C12 | C33 | C3⋊C8 | D12 | C3×C6 | C3×C6 | C3×C6 | C12 | C32 | C32 | C6 | C6 | C3 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
Matrix representation of C3×D12.S3 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 71 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 9 | 0 | 0 | 0 | 0 |
46 | 68 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 61 | 0 | 0 | 0 | 0 |
6 | 61 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,71,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,46,0,0,0,0,9,68,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[0,6,0,0,0,0,61,61,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3×D12.S3 in GAP, Magma, Sage, TeX
C_3\times D_{12}.S_3
% in TeX
G:=Group("C3xD12.S3");
// GroupNames label
G:=SmallGroup(432,421);
// by ID
G=gap.SmallGroup(432,421);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,92,1011,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^12=c^2=d^3=1,e^2=b^9,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=d^-1>;
// generators/relations