Extensions 1→N→G→Q→1 with N=C24 and Q=D9

Direct product G=N×Q with N=C24 and Q=D9
dρLabelID
D9×C241442D9xC24432,105

Semidirect products G=N:Q with N=C24 and Q=D9
extensionφ:Q→Aut NdρLabelID
C241D9 = C721S3φ: D9/C9C2 ⊆ Aut C24216C24:1D9432,172
C242D9 = C24⋊D9φ: D9/C9C2 ⊆ Aut C24216C24:2D9432,171
C243D9 = C3×D72φ: D9/C9C2 ⊆ Aut C241442C24:3D9432,108
C244D9 = C8×C9⋊S3φ: D9/C9C2 ⊆ Aut C24216C24:4D9432,169
C245D9 = C72⋊S3φ: D9/C9C2 ⊆ Aut C24216C24:5D9432,170
C246D9 = C3×C72⋊C2φ: D9/C9C2 ⊆ Aut C241442C24:6D9432,107
C247D9 = C3×C8⋊D9φ: D9/C9C2 ⊆ Aut C241442C24:7D9432,106

Non-split extensions G=N.Q with N=C24 and Q=D9
extensionφ:Q→Aut NdρLabelID
C24.1D9 = Dic108φ: D9/C9C2 ⊆ Aut C244322-C24.1D9432,4
C24.2D9 = D216φ: D9/C9C2 ⊆ Aut C242162+C24.2D9432,8
C24.3D9 = C24.D9φ: D9/C9C2 ⊆ Aut C24432C24.3D9432,168
C24.4D9 = C216⋊C2φ: D9/C9C2 ⊆ Aut C242162C24.4D9432,7
C24.5D9 = C3×Dic36φ: D9/C9C2 ⊆ Aut C241442C24.5D9432,104
C24.6D9 = C27⋊C16φ: D9/C9C2 ⊆ Aut C244322C24.6D9432,1
C24.7D9 = C8×D27φ: D9/C9C2 ⊆ Aut C242162C24.7D9432,5
C24.8D9 = C8⋊D27φ: D9/C9C2 ⊆ Aut C242162C24.8D9432,6
C24.9D9 = C72.S3φ: D9/C9C2 ⊆ Aut C24432C24.9D9432,32
C24.10D9 = C3×C9⋊C16central extension (φ=1)1442C24.10D9432,28

׿
×
𝔽