Extensions 1→N→G→Q→1 with N=S3xDic9 and Q=C2

Direct product G=NxQ with N=S3xDic9 and Q=C2
dρLabelID
C2xS3xDic9144C2xS3xDic9432,308

Semidirect products G=N:Q with N=S3xDic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xDic9):1C2 = D12:5D9φ: C2/C1C2 ⊆ Out S3xDic91444-(S3xDic9):1C2432,285
(S3xDic9):2C2 = D12:D9φ: C2/C1C2 ⊆ Out S3xDic9724(S3xDic9):2C2432,286
(S3xDic9):3C2 = Dic3.D18φ: C2/C1C2 ⊆ Out S3xDic9724(S3xDic9):3C2432,309
(S3xDic9):4C2 = D18.4D6φ: C2/C1C2 ⊆ Out S3xDic9724-(S3xDic9):4C2432,310
(S3xDic9):5C2 = S3xC9:D4φ: C2/C1C2 ⊆ Out S3xDic9724(S3xDic9):5C2432,313
(S3xDic9):6C2 = C4xS3xD9φ: trivial image724(S3xDic9):6C2432,290

Non-split extensions G=N.Q with N=S3xDic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xDic9).C2 = S3xDic18φ: C2/C1C2 ⊆ Out S3xDic91444-(S3xDic9).C2432,284

׿
x
:
Z
F
o
wr
Q
<