Extensions 1→N→G→Q→1 with N=S3×Dic9 and Q=C2

Direct product G=N×Q with N=S3×Dic9 and Q=C2
dρLabelID
C2×S3×Dic9144C2xS3xDic9432,308

Semidirect products G=N:Q with N=S3×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic9)⋊1C2 = D125D9φ: C2/C1C2 ⊆ Out S3×Dic91444-(S3xDic9):1C2432,285
(S3×Dic9)⋊2C2 = D12⋊D9φ: C2/C1C2 ⊆ Out S3×Dic9724(S3xDic9):2C2432,286
(S3×Dic9)⋊3C2 = Dic3.D18φ: C2/C1C2 ⊆ Out S3×Dic9724(S3xDic9):3C2432,309
(S3×Dic9)⋊4C2 = D18.4D6φ: C2/C1C2 ⊆ Out S3×Dic9724-(S3xDic9):4C2432,310
(S3×Dic9)⋊5C2 = S3×C9⋊D4φ: C2/C1C2 ⊆ Out S3×Dic9724(S3xDic9):5C2432,313
(S3×Dic9)⋊6C2 = C4×S3×D9φ: trivial image724(S3xDic9):6C2432,290

Non-split extensions G=N.Q with N=S3×Dic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic9).C2 = S3×Dic18φ: C2/C1C2 ⊆ Out S3×Dic91444-(S3xDic9).C2432,284

׿
×
𝔽