Copied to
clipboard

G = S3×Dic18order 432 = 24·33

Direct product of S3 and Dic18

direct product, metabelian, supersoluble, monomial

Aliases: S3×Dic18, D6.8D18, C36.34D6, C12.23D18, Dic9.2D6, Dic3.7D18, (S3×C9)⋊Q8, C92(S3×Q8), C12.48S32, (C4×S3).1D9, C4.12(S3×D9), (S3×Dic9).C2, (C3×S3).Dic6, (S3×C36).1C2, (S3×C12).4S3, (S3×C6).25D6, C31(C2×Dic18), (C3×C12).93D6, C3.2(S3×Dic6), C12.D93C2, C6.5(C22×D9), (C3×Dic18)⋊3C2, C9⋊Dic61C2, C18.5(C22×S3), (C3×C36).5C22, (C3×C18).5C23, (S3×C18).8C22, (C3×Dic3).28D6, C9⋊Dic3.2C22, C32.2(C2×Dic6), (C3×Dic9).2C22, (C9×Dic3).7C22, (C3×C9)⋊3(C2×Q8), C2.9(C2×S3×D9), C6.24(C2×S32), (C3×C6).73(C22×S3), SmallGroup(432,284)

Series: Derived Chief Lower central Upper central

C1C3×C18 — S3×Dic18
C1C3C32C3×C9C3×C18S3×C18S3×Dic9 — S3×Dic18
C3×C9C3×C18 — S3×Dic18
C1C2C4

Generators and relations for S3×Dic18
 G = < a,b,c,d | a3=b2=c36=1, d2=c18, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 656 in 126 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, Q8, C9, C9, C32, Dic3, Dic3, C12, C12, D6, C2×C6, C2×Q8, C18, C18, C3×S3, C3×C6, Dic6, C4×S3, C4×S3, C2×Dic3, C2×C12, C3×Q8, C3×C9, Dic9, Dic9, C36, C36, C2×C18, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×Dic6, S3×Q8, S3×C9, C3×C18, Dic18, Dic18, C2×Dic9, C2×C36, S3×Dic3, C322Q8, C3×Dic6, S3×C12, C324Q8, C3×Dic9, C9×Dic3, C9⋊Dic3, C3×C36, S3×C18, C2×Dic18, S3×Dic6, C9⋊Dic6, S3×Dic9, C3×Dic18, S3×C36, C12.D9, S3×Dic18
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, D9, Dic6, C22×S3, D18, S32, C2×Dic6, S3×Q8, Dic18, C22×D9, C2×S32, S3×D9, C2×Dic18, S3×Dic6, C2×S3×D9, S3×Dic18

Smallest permutation representation of S3×Dic18
On 144 points
Generators in S144
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 49 61)(38 50 62)(39 51 63)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)(46 58 70)(47 59 71)(48 60 72)(73 85 97)(74 86 98)(75 87 99)(76 88 100)(77 89 101)(78 90 102)(79 91 103)(80 92 104)(81 93 105)(82 94 106)(83 95 107)(84 96 108)(109 133 121)(110 134 122)(111 135 123)(112 136 124)(113 137 125)(114 138 126)(115 139 127)(116 140 128)(117 141 129)(118 142 130)(119 143 131)(120 144 132)
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 81)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(37 136)(38 137)(39 138)(40 139)(41 140)(42 141)(43 142)(44 143)(45 144)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 41 19 59)(2 40 20 58)(3 39 21 57)(4 38 22 56)(5 37 23 55)(6 72 24 54)(7 71 25 53)(8 70 26 52)(9 69 27 51)(10 68 28 50)(11 67 29 49)(12 66 30 48)(13 65 31 47)(14 64 32 46)(15 63 33 45)(16 62 34 44)(17 61 35 43)(18 60 36 42)(73 140 91 122)(74 139 92 121)(75 138 93 120)(76 137 94 119)(77 136 95 118)(78 135 96 117)(79 134 97 116)(80 133 98 115)(81 132 99 114)(82 131 100 113)(83 130 101 112)(84 129 102 111)(85 128 103 110)(86 127 104 109)(87 126 105 144)(88 125 106 143)(89 124 107 142)(90 123 108 141)

G:=sub<Sym(144)| (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72)(73,85,97)(74,86,98)(75,87,99)(76,88,100)(77,89,101)(78,90,102)(79,91,103)(80,92,104)(81,93,105)(82,94,106)(83,95,107)(84,96,108)(109,133,121)(110,134,122)(111,135,123)(112,136,124)(113,137,125)(114,138,126)(115,139,127)(116,140,128)(117,141,129)(118,142,130)(119,143,131)(120,144,132), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,136)(38,137)(39,138)(40,139)(41,140)(42,141)(43,142)(44,143)(45,144)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,41,19,59)(2,40,20,58)(3,39,21,57)(4,38,22,56)(5,37,23,55)(6,72,24,54)(7,71,25,53)(8,70,26,52)(9,69,27,51)(10,68,28,50)(11,67,29,49)(12,66,30,48)(13,65,31,47)(14,64,32,46)(15,63,33,45)(16,62,34,44)(17,61,35,43)(18,60,36,42)(73,140,91,122)(74,139,92,121)(75,138,93,120)(76,137,94,119)(77,136,95,118)(78,135,96,117)(79,134,97,116)(80,133,98,115)(81,132,99,114)(82,131,100,113)(83,130,101,112)(84,129,102,111)(85,128,103,110)(86,127,104,109)(87,126,105,144)(88,125,106,143)(89,124,107,142)(90,123,108,141)>;

G:=Group( (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72)(73,85,97)(74,86,98)(75,87,99)(76,88,100)(77,89,101)(78,90,102)(79,91,103)(80,92,104)(81,93,105)(82,94,106)(83,95,107)(84,96,108)(109,133,121)(110,134,122)(111,135,123)(112,136,124)(113,137,125)(114,138,126)(115,139,127)(116,140,128)(117,141,129)(118,142,130)(119,143,131)(120,144,132), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,136)(38,137)(39,138)(40,139)(41,140)(42,141)(43,142)(44,143)(45,144)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,41,19,59)(2,40,20,58)(3,39,21,57)(4,38,22,56)(5,37,23,55)(6,72,24,54)(7,71,25,53)(8,70,26,52)(9,69,27,51)(10,68,28,50)(11,67,29,49)(12,66,30,48)(13,65,31,47)(14,64,32,46)(15,63,33,45)(16,62,34,44)(17,61,35,43)(18,60,36,42)(73,140,91,122)(74,139,92,121)(75,138,93,120)(76,137,94,119)(77,136,95,118)(78,135,96,117)(79,134,97,116)(80,133,98,115)(81,132,99,114)(82,131,100,113)(83,130,101,112)(84,129,102,111)(85,128,103,110)(86,127,104,109)(87,126,105,144)(88,125,106,143)(89,124,107,142)(90,123,108,141) );

G=PermutationGroup([[(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,49,61),(38,50,62),(39,51,63),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69),(46,58,70),(47,59,71),(48,60,72),(73,85,97),(74,86,98),(75,87,99),(76,88,100),(77,89,101),(78,90,102),(79,91,103),(80,92,104),(81,93,105),(82,94,106),(83,95,107),(84,96,108),(109,133,121),(110,134,122),(111,135,123),(112,136,124),(113,137,125),(114,138,126),(115,139,127),(116,140,128),(117,141,129),(118,142,130),(119,143,131),(120,144,132)], [(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,81),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(37,136),(38,137),(39,138),(40,139),(41,140),(42,141),(43,142),(44,143),(45,144),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,41,19,59),(2,40,20,58),(3,39,21,57),(4,38,22,56),(5,37,23,55),(6,72,24,54),(7,71,25,53),(8,70,26,52),(9,69,27,51),(10,68,28,50),(11,67,29,49),(12,66,30,48),(13,65,31,47),(14,64,32,46),(15,63,33,45),(16,62,34,44),(17,61,35,43),(18,60,36,42),(73,140,91,122),(74,139,92,121),(75,138,93,120),(76,137,94,119),(77,136,95,118),(78,135,96,117),(79,134,97,116),(80,133,98,115),(81,132,99,114),(82,131,100,113),(83,130,101,112),(84,129,102,111),(85,128,103,110),(86,127,104,109),(87,126,105,144),(88,125,106,143),(89,124,107,142),(90,123,108,141)]])

63 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A6B6C6D6E9A9B9C9D9E9F12A12B12C12D12E12F12G12H12I18A18B18C18D18E18F18G···18L36A···36F36G···36L36M···36R
order12223334444446666699999912121212121212121218181818181818···1836···3636···3636···36
size1133224261818545422466222444224446636362224446···62···24···46···6

63 irreducible representations

dim111111222222222222224444444
type++++++++-++++++-+++-+-++-+-
imageC1C2C2C2C2C2S3S3Q8D6D6D6D6D6D9Dic6D18D18D18Dic18S32S3×Q8C2×S32S3×D9S3×Dic6C2×S3×D9S3×Dic18
kernelS3×Dic18C9⋊Dic6S3×Dic9C3×Dic18S3×C36C12.D9Dic18S3×C12S3×C9Dic9C36C3×Dic3C3×C12S3×C6C4×S3C3×S3Dic3C12D6S3C12C9C6C4C3C2C1
# reps1221111122111134333121113236

Matrix representation of S3×Dic18 in GL6(𝔽37)

100000
010000
000100
00363600
000010
000001
,
100000
010000
0036000
001100
000010
000001
,
15340000
26220000
0036000
0003600
000070
0000016
,
2740000
21100000
0036000
0003600
0000012
0000340

G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,1,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,26,0,0,0,0,34,22,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,7,0,0,0,0,0,0,16],[27,21,0,0,0,0,4,10,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,34,0,0,0,0,12,0] >;

S3×Dic18 in GAP, Magma, Sage, TeX

S_3\times {\rm Dic}_{18}
% in TeX

G:=Group("S3xDic18");
// GroupNames label

G:=SmallGroup(432,284);
// by ID

G=gap.SmallGroup(432,284);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,135,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^36=1,d^2=c^18,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽