# Extensions 1→N→G→Q→1 with N=C32×Dic3 and Q=C22

Direct product G=N×Q with N=C32×Dic3 and Q=C22
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C32×Dic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32×Dic3)⋊1C22 = S3×C3⋊D12φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3):1C2^2432,598
(C32×Dic3)⋊2C22 = D6⋊S32φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3):2C2^2432,600
(C32×Dic3)⋊3C22 = (S3×C6)⋊D6φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3):3C2^2432,601
(C32×Dic3)⋊4C22 = C3⋊S34D12φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3):4C2^2432,602
(C32×Dic3)⋊5C22 = C3×S3×C3⋊D4φ: C22/C1C22 ⊆ Out C32×Dic3244(C3^2xDic3):5C2^2432,658
(C32×Dic3)⋊6C22 = C3×Dic3⋊D6φ: C22/C1C22 ⊆ Out C32×Dic3244(C3^2xDic3):6C2^2432,659
(C32×Dic3)⋊7C22 = C3⋊S3×C3⋊D4φ: C22/C1C22 ⊆ Out C32×Dic372(C3^2xDic3):7C2^2432,685
(C32×Dic3)⋊8C22 = C6223D6φ: C22/C1C22 ⊆ Out C32×Dic336(C3^2xDic3):8C2^2432,686
(C32×Dic3)⋊9C22 = S32×Dic3φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3):9C2^2432,594
(C32×Dic3)⋊10C22 = S3×C6.D6φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3):10C2^2432,595
(C32×Dic3)⋊11C22 = Dic36S32φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3):11C2^2432,596
(C32×Dic3)⋊12C22 = S3×C12⋊S3φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3):12C2^2432,671
(C32×Dic3)⋊13C22 = C2×C338D4φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3):13C2^2432,682
(C32×Dic3)⋊14C22 = C3×S3×D12φ: C22/C2C2 ⊆ Out C32×Dic3484(C3^2xDic3):14C2^2432,649
(C32×Dic3)⋊15C22 = C6×C3⋊D12φ: C22/C2C2 ⊆ Out C32×Dic348(C3^2xDic3):15C2^2432,656
(C32×Dic3)⋊16C22 = S32×C12φ: C22/C2C2 ⊆ Out C32×Dic3484(C3^2xDic3):16C2^2432,648
(C32×Dic3)⋊17C22 = S3×C6×Dic3φ: C22/C2C2 ⊆ Out C32×Dic348(C3^2xDic3):17C2^2432,651
(C32×Dic3)⋊18C22 = C6×C6.D6φ: C22/C2C2 ⊆ Out C32×Dic348(C3^2xDic3):18C2^2432,654
(C32×Dic3)⋊19C22 = C4×S3×C3⋊S3φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3):19C2^2432,670
(C32×Dic3)⋊20C22 = C2×Dic3×C3⋊S3φ: C22/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3):20C2^2432,677
(C32×Dic3)⋊21C22 = C2×C338(C2×C4)φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3):21C2^2432,679
(C32×Dic3)⋊22C22 = S3×D4×C32φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3):22C2^2432,704
(C32×Dic3)⋊23C22 = C3×C6×C3⋊D4φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3):23C2^2432,709
(C32×Dic3)⋊24C22 = S3×C6×C12φ: trivial image144(C3^2xDic3):24C2^2432,701

Non-split extensions G=N.Q with N=C32×Dic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32×Dic3).1C22 = S3×C322Q8φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3).1C2^2432,603
(C32×Dic3).2C22 = C335(C2×Q8)φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3).2C2^2432,604
(C32×Dic3).3C22 = C336(C2×Q8)φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3).3C2^2432,605
(C32×Dic3).4C22 = D6.4S32φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3).4C2^2432,608
(C32×Dic3).5C22 = D6.3S32φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3).5C2^2432,609
(C32×Dic3).6C22 = D6.6S32φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3).6C2^2432,611
(C32×Dic3).7C22 = Dic3.S32φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3).7C2^2432,612
(C32×Dic3).8C22 = C3×S3×Dic6φ: C22/C1C22 ⊆ Out C32×Dic3484(C3^2xDic3).8C2^2432,642
(C32×Dic3).9C22 = C3×D12⋊S3φ: C22/C1C22 ⊆ Out C32×Dic3484(C3^2xDic3).9C2^2432,644
(C32×Dic3).10C22 = C3×Dic3.D6φ: C22/C1C22 ⊆ Out C32×Dic3484(C3^2xDic3).10C2^2432,645
(C32×Dic3).11C22 = C3×D6.6D6φ: C22/C1C22 ⊆ Out C32×Dic3484(C3^2xDic3).11C2^2432,647
(C32×Dic3).12C22 = C3×D6.4D6φ: C22/C1C22 ⊆ Out C32×Dic3244(C3^2xDic3).12C2^2432,653
(C32×Dic3).13C22 = C3⋊S3×Dic6φ: C22/C1C22 ⊆ Out C32×Dic3144(C3^2xDic3).13C2^2432,663
(C32×Dic3).14C22 = C12.39S32φ: C22/C1C22 ⊆ Out C32×Dic372(C3^2xDic3).14C2^2432,664
(C32×Dic3).15C22 = C12.40S32φ: C22/C1C22 ⊆ Out C32×Dic372(C3^2xDic3).15C2^2432,665
(C32×Dic3).16C22 = C329(S3×Q8)φ: C22/C1C22 ⊆ Out C32×Dic372(C3^2xDic3).16C2^2432,666
(C32×Dic3).17C22 = C62.90D6φ: C22/C1C22 ⊆ Out C32×Dic372(C3^2xDic3).17C2^2432,675
(C32×Dic3).18C22 = C62.91D6φ: C22/C1C22 ⊆ Out C32×Dic372(C3^2xDic3).18C2^2432,676
(C32×Dic3).19C22 = (S3×C6).D6φ: C22/C1C22 ⊆ Out C32×Dic3248+(C3^2xDic3).19C2^2432,606
(C32×Dic3).20C22 = D6.S32φ: C22/C1C22 ⊆ Out C32×Dic3488-(C3^2xDic3).20C2^2432,607
(C32×Dic3).21C22 = S3×C324Q8φ: C22/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).21C2^2432,660
(C32×Dic3).22C22 = C12.73S32φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3).22C2^2432,667
(C32×Dic3).23C22 = C2×C334Q8φ: C22/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).23C2^2432,683
(C32×Dic3).24C22 = C3×D6.D6φ: C22/C2C2 ⊆ Out C32×Dic3484(C3^2xDic3).24C2^2432,646
(C32×Dic3).25C22 = C6×C322Q8φ: C22/C2C2 ⊆ Out C32×Dic348(C3^2xDic3).25C2^2432,657
(C32×Dic3).26C22 = C3×D125S3φ: C22/C2C2 ⊆ Out C32×Dic3484(C3^2xDic3).26C2^2432,643
(C32×Dic3).27C22 = C3×D6.3D6φ: C22/C2C2 ⊆ Out C32×Dic3244(C3^2xDic3).27C2^2432,652
(C32×Dic3).28C22 = C12.57S32φ: C22/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).28C2^2432,668
(C32×Dic3).29C22 = C12.58S32φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3).29C2^2432,669
(C32×Dic3).30C22 = C62.93D6φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3).30C2^2432,678
(C32×Dic3).31C22 = C3×C6×Dic6φ: C22/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).31C2^2432,700
(C32×Dic3).32C22 = C32×C4○D12φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3).32C2^2432,703
(C32×Dic3).33C22 = C32×D42S3φ: C22/C2C2 ⊆ Out C32×Dic372(C3^2xDic3).33C2^2432,705
(C32×Dic3).34C22 = S3×Q8×C32φ: C22/C2C2 ⊆ Out C32×Dic3144(C3^2xDic3).34C2^2432,706
(C32×Dic3).35C22 = C32×Q83S3φ: trivial image144(C3^2xDic3).35C2^2432,707

׿
×
𝔽