Extensions 1→N→G→Q→1 with N=C2×C3⋊Dic3 and Q=S3

Direct product G=N×Q with N=C2×C3⋊Dic3 and Q=S3
dρLabelID
C2×S3×C3⋊Dic3144C2xS3xC3:Dic3432,674

Semidirect products G=N:Q with N=C2×C3⋊Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×C3⋊Dic3)⋊1S3 = C62.4D6φ: S3/C1S3 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):1S3432,97
(C2×C3⋊Dic3)⋊2S3 = C62.5D6φ: S3/C1S3 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):2S3432,98
(C2×C3⋊Dic3)⋊3S3 = C2×C6.S32φ: S3/C1S3 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):3S3432,317
(C2×C3⋊Dic3)⋊4S3 = C62.8D6φ: S3/C1S3 ⊆ Out C2×C3⋊Dic37212-(C2xC3:Dic3):4S3432,318
(C2×C3⋊Dic3)⋊5S3 = C2×He3⋊(C2×C4)φ: S3/C1S3 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):5S3432,321
(C2×C3⋊Dic3)⋊6S3 = C2×He33D4φ: S3/C1S3 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):6S3432,322
(C2×C3⋊Dic3)⋊7S3 = C62.77D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3):7S3432,449
(C2×C3⋊Dic3)⋊8S3 = C62.79D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):8S3432,451
(C2×C3⋊Dic3)⋊9S3 = C62.84D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3):9S3432,461
(C2×C3⋊Dic3)⋊10S3 = C62.90D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):10S3432,675
(C2×C3⋊Dic3)⋊11S3 = C2×C337D4φ: S3/C3C2 ⊆ Out C2×C3⋊Dic372(C2xC3:Dic3):11S3432,681
(C2×C3⋊Dic3)⋊12S3 = C2×C339(C2×C4)φ: S3/C3C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3):12S3432,692
(C2×C3⋊Dic3)⋊13S3 = C62.96D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic3244(C2xC3:Dic3):13S3432,693
(C2×C3⋊Dic3)⋊14S3 = C2×C339D4φ: S3/C3C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3):14S3432,694
(C2×C3⋊Dic3)⋊15S3 = C2×C338(C2×C4)φ: trivial image72(C2xC3:Dic3):15S3432,679

Non-split extensions G=N.Q with N=C2×C3⋊Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×C3⋊Dic3).1S3 = He3⋊C42φ: S3/C1S3 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).1S3432,94
(C2×C3⋊Dic3).2S3 = C62.D6φ: S3/C1S3 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).2S3432,95
(C2×C3⋊Dic3).3S3 = C62.3D6φ: S3/C1S3 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).3S3432,96
(C2×C3⋊Dic3).4S3 = C2×He32Q8φ: S3/C1S3 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).4S3432,316
(C2×C3⋊Dic3).5S3 = C62.80D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).5S3432,452
(C2×C3⋊Dic3).6S3 = C62.81D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).6S3432,453
(C2×C3⋊Dic3).7S3 = C62.82D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).7S3432,454
(C2×C3⋊Dic3).8S3 = C336C42φ: S3/C3C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).8S3432,460
(C2×C3⋊Dic3).9S3 = C62.85D6φ: S3/C3C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).9S3432,462
(C2×C3⋊Dic3).10S3 = C2×C334C8φ: S3/C3C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).10S3432,639
(C2×C3⋊Dic3).11S3 = C3312M4(2)φ: S3/C3C2 ⊆ Out C2×C3⋊Dic3244(C2xC3:Dic3).11S3432,640
(C2×C3⋊Dic3).12S3 = C2×C334Q8φ: S3/C3C2 ⊆ Out C2×C3⋊Dic3144(C2xC3:Dic3).12S3432,683
(C2×C3⋊Dic3).13S3 = C2×C335Q8φ: S3/C3C2 ⊆ Out C2×C3⋊Dic348(C2xC3:Dic3).13S3432,695
(C2×C3⋊Dic3).14S3 = Dic3×C3⋊Dic3φ: trivial image144(C2xC3:Dic3).14S3432,448

׿
×
𝔽