Extensions 1→N→G→Q→1 with N=C3 and Q=C2×Dic18

Direct product G=N×Q with N=C3 and Q=C2×Dic18
dρLabelID
C6×Dic18144C6xDic18432,340

Semidirect products G=N:Q with N=C3 and Q=C2×Dic18
extensionφ:Q→Aut NdρLabelID
C31(C2×Dic18) = S3×Dic18φ: C2×Dic18/Dic18C2 ⊆ Aut C31444-C3:1(C2xDic18)432,284
C32(C2×Dic18) = C2×C9⋊Dic6φ: C2×Dic18/C2×Dic9C2 ⊆ Aut C3144C3:2(C2xDic18)432,303
C33(C2×Dic18) = C2×C12.D9φ: C2×Dic18/C2×C36C2 ⊆ Aut C3432C3:3(C2xDic18)432,380

Non-split extensions G=N.Q with N=C3 and Q=C2×Dic18
extensionφ:Q→Aut NdρLabelID
C3.(C2×Dic18) = C2×Dic54φ: C2×Dic18/C2×C36C2 ⊆ Aut C3432C3.(C2xDic18)432,43

׿
×
𝔽