Copied to
clipboard

G = C2×C9⋊Dic6order 432 = 24·33

Direct product of C2 and C9⋊Dic6

direct product, metabelian, supersoluble, monomial

Aliases: C2×C9⋊Dic6, C61Dic18, C181Dic6, Dic9.9D6, C62.60D6, Dic3.9D18, (C3×C18)⋊Q8, C92(C2×Dic6), C32(C2×Dic18), (C2×C18).15D6, (C2×C6).15D18, (C6×C18).9C22, (C2×Dic3).4D9, (C6×Dic9).7C2, (C6×Dic3).9S3, (C2×Dic9).4S3, (C3×C6).15Dic6, C6.15(C22×D9), C22.11(S3×D9), (C3×C18).15C23, C18.15(C22×S3), (Dic3×C18).6C2, (C3×Dic3).31D6, C6.4(C322Q8), C32.3(C2×Dic6), C9⋊Dic3.11C22, (C9×Dic3).9C22, (C3×Dic9).11C22, (C3×C9)⋊4(C2×Q8), C6.34(C2×S32), (C2×C6).21S32, C2.18(C2×S3×D9), (C2×C9⋊Dic3).7C2, C3.1(C2×C322Q8), (C3×C6).83(C22×S3), SmallGroup(432,303)

Series: Derived Chief Lower central Upper central

C1C3×C18 — C2×C9⋊Dic6
C1C3C32C3×C9C3×C18C9×Dic3C9⋊Dic6 — C2×C9⋊Dic6
C3×C9C3×C18 — C2×C9⋊Dic6
C1C22

Generators and relations for C2×C9⋊Dic6
 G = < a,b,c,d | a2=b9=c12=1, d2=c6, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=c-1 >

Subgroups: 652 in 130 conjugacy classes, 53 normal (25 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, Q8, C9, C9, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C2×Q8, C18, C18, C18, C3×C6, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C3×C9, Dic9, Dic9, C36, C2×C18, C2×C18, C3×Dic3, C3×Dic3, C3⋊Dic3, C62, C2×Dic6, C3×C18, C3×C18, Dic18, C2×Dic9, C2×Dic9, C2×C36, C322Q8, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C3×Dic9, C9×Dic3, C9⋊Dic3, C6×C18, C2×Dic18, C2×C322Q8, C9⋊Dic6, C6×Dic9, Dic3×C18, C2×C9⋊Dic3, C2×C9⋊Dic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, D9, Dic6, C22×S3, D18, S32, C2×Dic6, Dic18, C22×D9, C322Q8, C2×S32, S3×D9, C2×Dic18, C2×C322Q8, C9⋊Dic6, C2×S3×D9, C2×C9⋊Dic6

Smallest permutation representation of C2×C9⋊Dic6
On 144 points
Generators in S144
(1 83)(2 84)(3 73)(4 74)(5 75)(6 76)(7 77)(8 78)(9 79)(10 80)(11 81)(12 82)(13 119)(14 120)(15 109)(16 110)(17 111)(18 112)(19 113)(20 114)(21 115)(22 116)(23 117)(24 118)(25 108)(26 97)(27 98)(28 99)(29 100)(30 101)(31 102)(32 103)(33 104)(34 105)(35 106)(36 107)(37 130)(38 131)(39 132)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 88)(50 89)(51 90)(52 91)(53 92)(54 93)(55 94)(56 95)(57 96)(58 85)(59 86)(60 87)(61 142)(62 143)(63 144)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(71 140)(72 141)
(1 142 110 9 138 118 5 134 114)(2 115 135 6 119 139 10 111 143)(3 144 112 11 140 120 7 136 116)(4 117 137 8 109 141 12 113 133)(13 70 80 17 62 84 21 66 76)(14 77 67 22 73 63 18 81 71)(15 72 82 19 64 74 23 68 78)(16 79 69 24 75 65 20 83 61)(25 59 132 33 55 128 29 51 124)(26 125 52 30 129 56 34 121 60)(27 49 122 35 57 130 31 53 126)(28 127 54 32 131 58 36 123 50)(37 102 92 45 98 88 41 106 96)(38 85 107 42 89 99 46 93 103)(39 104 94 47 100 90 43 108 86)(40 87 97 44 91 101 48 95 105)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 131 7 125)(2 130 8 124)(3 129 9 123)(4 128 10 122)(5 127 11 121)(6 126 12 132)(13 98 19 104)(14 97 20 103)(15 108 21 102)(16 107 22 101)(17 106 23 100)(18 105 24 99)(25 115 31 109)(26 114 32 120)(27 113 33 119)(28 112 34 118)(29 111 35 117)(30 110 36 116)(37 78 43 84)(38 77 44 83)(39 76 45 82)(40 75 46 81)(41 74 47 80)(42 73 48 79)(49 133 55 139)(50 144 56 138)(51 143 57 137)(52 142 58 136)(53 141 59 135)(54 140 60 134)(61 85 67 91)(62 96 68 90)(63 95 69 89)(64 94 70 88)(65 93 71 87)(66 92 72 86)

G:=sub<Sym(144)| (1,83)(2,84)(3,73)(4,74)(5,75)(6,76)(7,77)(8,78)(9,79)(10,80)(11,81)(12,82)(13,119)(14,120)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,108)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,130)(38,131)(39,132)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,85)(59,86)(60,87)(61,142)(62,143)(63,144)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,140)(72,141), (1,142,110,9,138,118,5,134,114)(2,115,135,6,119,139,10,111,143)(3,144,112,11,140,120,7,136,116)(4,117,137,8,109,141,12,113,133)(13,70,80,17,62,84,21,66,76)(14,77,67,22,73,63,18,81,71)(15,72,82,19,64,74,23,68,78)(16,79,69,24,75,65,20,83,61)(25,59,132,33,55,128,29,51,124)(26,125,52,30,129,56,34,121,60)(27,49,122,35,57,130,31,53,126)(28,127,54,32,131,58,36,123,50)(37,102,92,45,98,88,41,106,96)(38,85,107,42,89,99,46,93,103)(39,104,94,47,100,90,43,108,86)(40,87,97,44,91,101,48,95,105), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,131,7,125)(2,130,8,124)(3,129,9,123)(4,128,10,122)(5,127,11,121)(6,126,12,132)(13,98,19,104)(14,97,20,103)(15,108,21,102)(16,107,22,101)(17,106,23,100)(18,105,24,99)(25,115,31,109)(26,114,32,120)(27,113,33,119)(28,112,34,118)(29,111,35,117)(30,110,36,116)(37,78,43,84)(38,77,44,83)(39,76,45,82)(40,75,46,81)(41,74,47,80)(42,73,48,79)(49,133,55,139)(50,144,56,138)(51,143,57,137)(52,142,58,136)(53,141,59,135)(54,140,60,134)(61,85,67,91)(62,96,68,90)(63,95,69,89)(64,94,70,88)(65,93,71,87)(66,92,72,86)>;

G:=Group( (1,83)(2,84)(3,73)(4,74)(5,75)(6,76)(7,77)(8,78)(9,79)(10,80)(11,81)(12,82)(13,119)(14,120)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,108)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,130)(38,131)(39,132)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,85)(59,86)(60,87)(61,142)(62,143)(63,144)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,140)(72,141), (1,142,110,9,138,118,5,134,114)(2,115,135,6,119,139,10,111,143)(3,144,112,11,140,120,7,136,116)(4,117,137,8,109,141,12,113,133)(13,70,80,17,62,84,21,66,76)(14,77,67,22,73,63,18,81,71)(15,72,82,19,64,74,23,68,78)(16,79,69,24,75,65,20,83,61)(25,59,132,33,55,128,29,51,124)(26,125,52,30,129,56,34,121,60)(27,49,122,35,57,130,31,53,126)(28,127,54,32,131,58,36,123,50)(37,102,92,45,98,88,41,106,96)(38,85,107,42,89,99,46,93,103)(39,104,94,47,100,90,43,108,86)(40,87,97,44,91,101,48,95,105), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,131,7,125)(2,130,8,124)(3,129,9,123)(4,128,10,122)(5,127,11,121)(6,126,12,132)(13,98,19,104)(14,97,20,103)(15,108,21,102)(16,107,22,101)(17,106,23,100)(18,105,24,99)(25,115,31,109)(26,114,32,120)(27,113,33,119)(28,112,34,118)(29,111,35,117)(30,110,36,116)(37,78,43,84)(38,77,44,83)(39,76,45,82)(40,75,46,81)(41,74,47,80)(42,73,48,79)(49,133,55,139)(50,144,56,138)(51,143,57,137)(52,142,58,136)(53,141,59,135)(54,140,60,134)(61,85,67,91)(62,96,68,90)(63,95,69,89)(64,94,70,88)(65,93,71,87)(66,92,72,86) );

G=PermutationGroup([[(1,83),(2,84),(3,73),(4,74),(5,75),(6,76),(7,77),(8,78),(9,79),(10,80),(11,81),(12,82),(13,119),(14,120),(15,109),(16,110),(17,111),(18,112),(19,113),(20,114),(21,115),(22,116),(23,117),(24,118),(25,108),(26,97),(27,98),(28,99),(29,100),(30,101),(31,102),(32,103),(33,104),(34,105),(35,106),(36,107),(37,130),(38,131),(39,132),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,88),(50,89),(51,90),(52,91),(53,92),(54,93),(55,94),(56,95),(57,96),(58,85),(59,86),(60,87),(61,142),(62,143),(63,144),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(71,140),(72,141)], [(1,142,110,9,138,118,5,134,114),(2,115,135,6,119,139,10,111,143),(3,144,112,11,140,120,7,136,116),(4,117,137,8,109,141,12,113,133),(13,70,80,17,62,84,21,66,76),(14,77,67,22,73,63,18,81,71),(15,72,82,19,64,74,23,68,78),(16,79,69,24,75,65,20,83,61),(25,59,132,33,55,128,29,51,124),(26,125,52,30,129,56,34,121,60),(27,49,122,35,57,130,31,53,126),(28,127,54,32,131,58,36,123,50),(37,102,92,45,98,88,41,106,96),(38,85,107,42,89,99,46,93,103),(39,104,94,47,100,90,43,108,86),(40,87,97,44,91,101,48,95,105)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,131,7,125),(2,130,8,124),(3,129,9,123),(4,128,10,122),(5,127,11,121),(6,126,12,132),(13,98,19,104),(14,97,20,103),(15,108,21,102),(16,107,22,101),(17,106,23,100),(18,105,24,99),(25,115,31,109),(26,114,32,120),(27,113,33,119),(28,112,34,118),(29,111,35,117),(30,110,36,116),(37,78,43,84),(38,77,44,83),(39,76,45,82),(40,75,46,81),(41,74,47,80),(42,73,48,79),(49,133,55,139),(50,144,56,138),(51,143,57,137),(52,142,58,136),(53,141,59,135),(54,140,60,134),(61,85,67,91),(62,96,68,90),(63,95,69,89),(64,94,70,88),(65,93,71,87),(66,92,72,86)]])

66 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A···6F6G6H6I9A9B9C9D9E9F12A12B12C12D12E12F12G12H18A···18I18J···18R36A···36L
order12223334444446···6666999999121212121212121218···1818···1836···36
size111122466181854542···24442224446666181818182···24···46···6

66 irreducible representations

dim111112222222222222444444
type+++++++-+++++--++-+-++-+
imageC1C2C2C2C2S3S3Q8D6D6D6D6D9Dic6Dic6D18D18Dic18S32C322Q8C2×S32S3×D9C9⋊Dic6C2×S3×D9
kernelC2×C9⋊Dic6C9⋊Dic6C6×Dic9Dic3×C18C2×C9⋊Dic3C2×Dic9C6×Dic3C3×C18Dic9C2×C18C3×Dic3C62C2×Dic3C18C3×C6Dic3C2×C6C6C2×C6C6C6C22C2C2
# reps1411111221213446312121363

Matrix representation of C2×C9⋊Dic6 in GL6(𝔽37)

100000
010000
0036000
0003600
0000360
0000036
,
100000
010000
001000
000100
00003127
0000311
,
2020000
3170000
0003600
0013600
0000360
0000351
,
29150000
880000
000100
001000
000010
000001

G:=sub<GL(6,GF(37))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,3,0,0,0,0,27,11],[20,3,0,0,0,0,2,17,0,0,0,0,0,0,0,1,0,0,0,0,36,36,0,0,0,0,0,0,36,35,0,0,0,0,0,1],[29,8,0,0,0,0,15,8,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C2×C9⋊Dic6 in GAP, Magma, Sage, TeX

C_2\times C_9\rtimes {\rm Dic}_6
% in TeX

G:=Group("C2xC9:Dic6");
// GroupNames label

G:=SmallGroup(432,303);
// by ID

G=gap.SmallGroup(432,303);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,64,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^9=c^12=1,d^2=c^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽