Extensions 1→N→G→Q→1 with N=C9 and Q=S3×D4

Direct product G=N×Q with N=C9 and Q=S3×D4
dρLabelID
S3×D4×C9724S3xD4xC9432,358

Semidirect products G=N:Q with N=C9 and Q=S3×D4
extensionφ:Q→Aut NdρLabelID
C91(S3×D4) = S3×D36φ: S3×D4/C4×S3C2 ⊆ Aut C9724+C9:1(S3xD4)432,291
C92(S3×D4) = C36⋊D6φ: S3×D4/D12C2 ⊆ Aut C9724C9:2(S3xD4)432,293
C93(S3×D4) = D18⋊D6φ: S3×D4/C3⋊D4C2 ⊆ Aut C9364+C9:3(S3xD4)432,315
C94(S3×D4) = D4×C9⋊S3φ: S3×D4/C3×D4C2 ⊆ Aut C9108C9:4(S3xD4)432,388
C95(S3×D4) = S3×C9⋊D4φ: S3×D4/C22×S3C2 ⊆ Aut C9724C9:5(S3xD4)432,313

Non-split extensions G=N.Q with N=C9 and Q=S3×D4
extensionφ:Q→Aut NdρLabelID
C9.(S3×D4) = D4×D27φ: S3×D4/C3×D4C2 ⊆ Aut C91084+C9.(S3xD4)432,47

׿
×
𝔽